蓝桥杯历年省赛真题汇总及题目详解
2014第五届蓝桥杯省赛试题详解
标题:地宫取宝
X 国王有一个地宫宝库。是 n x m 个格子的矩阵。每个格子放一件宝贝。每个宝贝贴着价值标签。
地宫的入口在左上角,出口在右下角。
小明被带到地宫的入口,国王要求他只能向右或向下行走。
走过某个格子时,如果那个格子中的宝贝价值比小明手中任意宝贝价值都大,小明就可以拿起它(当然,也可以不拿)。
当小明走到出口时,如果他手中的宝贝恰好是k件,则这些宝贝就可以送给小明。
请你帮小明算一算,在给定的局面下,他有多少种不同的行动方案能获得这k件宝贝。
【数据格式】
输入一行3个整数,用空格分开:n m k (1<=n,m<=50, 1<=k<=12)
接下来有 n 行数据,每行有 m 个整数 Ci (0<=Ci<=12)代表这个格子上的宝物的价值
要求输出一个整数,表示正好取k个宝贝的行动方案数。该数字可能很大,输出它对 1000000007 取模的结果。
例如,输入:
2 2 2
1 2
2 1
程序应该输出:
2
再例如,输入:
2 3 2
1 2 3
2 1 5
程序应该输出:
14
资源约定:
峰值内存消耗 < 256M
CPU消耗 < 1000ms
请严格按要求输出,不要画蛇添足地打印类似:“请您输入…” 的多余内容。
所有代码放在同一个源文件中,调试通过后,拷贝提交该源码。
注意: main函数需要返回0
注意: 只使用ANSI C/ANSI C++ 标准,不要调用依赖于编译环境或操作系统的特殊函数。
注意: 所有依赖的函数必须明确地在源文件中 #include , 不能通过工程设置而省略常用头文件。
提交时,注意选择所期望的编译器类型。
/*
使用动态规划来解决,设定一个四维数组 dp[55][55][15][15],此数组用于存放当前的行动方案数量
dp[i][j][k][c]定义为到 (i,j) 这个点时,拿到了k件物品,并且当前的物品的最大价值小于c的方案数,那么可以推测出下面几种情况:
如果要取走(i,j)坐标的物品,那么位于(i-1,j)和(i,j-1)坐标的价值肯定小于mat[i][j],那么此时设置一个tmp1
tmp1 = dp[i-1][j][k-1][mat[i][j]] + dp[i][j-1][k-1][mat[i][j]]
如果不取(i,j)坐标的物品,此时设置一个tmp2
tmp2 = dp[i-1][j][k][c] + dp[i][j-1][k][c]
dp[i][j][k][c] = (tmp1+ tmp2)%mod即当前的方案数
最后输出dp[n][m][k][13]
*/
#include<stdio.h>
const int MOD = 1e9+7;
int mat[55][55];
int dp[55][55][15][15];
int n,m,k,ans;
int main()
{
int i,j,l,c;
int tmp1,tmp2;
scanf("%d%d%d",&n,&m,&k);
for( i=1;i<=n;++i)
for( j=1;j<=m;++j)
scanf("%d",&mat[i][j]);
for( i=1;i<=n;++i)
for( j=1;j<=m;++j)
for( l=0;l<=k;++l)
for( c=0;c<=13;++c)
{
tmp1 = 0;
if(i==1&&j==1) //此处表示初始条件
{
if(l==0) dp[i][j][l][c] = 1;
if(l==1&&c>mat[i][j]) dp[i][j][l][c]=1;
continue;
}
if(c>mat[i][j]&&l) tmp1 = dp[i-1][j][l-1][mat[i][j]] + dp[i][j-1][l-1][mat[i][j]];
tmp2 = dp[i-1][j][l][c] + dp[i][j-1][l][c];
dp[i][j][l][c] = (tmp1%MOD+tmp2%MOD)%MOD;
}
printf("%d\n",dp[n][m][k][13]);
return 0;
}