1.实验名称
利用泰勒展开和牛顿迭代求解定位方程
2.实验背景
已知GPS接收机观测到的伪距方程,且伪距定位方程组是非线性方程组,同时方程数大于未知量数(即为超定方程),利用泰勒展开和牛顿迭代对定位方程进行求解,并对仿真结果进行分析。
3.实验原理
3.1牛顿迭代法求解非线性方程组
3.2伪距
伪距是GPS接收机对卫星信号的一个最基本的距离测量值。伪距是由于卫星时钟与接收机时钟不同步产生的,测得的距离含有时钟误差和大气层折射延迟,而非“真实距离”,故称为伪距。
3.3 伪距定位原理
定义传播时延、星钟误差校正后的伪距观测方程为:
3.4 伪距定位算法
在得到N个卫星的观测量后,即可得到N个伪距测量方程。采用最小二乘法,N个非线性方程组的解算可以分为 5 步:
(1)数据准备与设计初值:
测量伪距,为接收机当前位置及接收机钟差设置初值。初值的选择:设置上次定位结果、用户输入位置和时间、卫星坐标均值在地面上的投影,或者全部设置为 0。
(2)非线性方程组线性化:
在当前历元k次牛顿迭代中,将方程进行线性化(考虑第n个方程):
全部观测方程也可以表示成矩阵方程组的形式。
(3)求解线性方程组:
利用最小二乘法求解GPS伪距定位线性矩阵方程组,若各个卫星测量值的误差方差以及权重已被确定,则可采用加权最小二乘算法求解。
(4)更新非线性方程组的根:
对接收机位置坐标及钟差进行更新。
(5)判断牛顿迭代的收敛性:
4.matlab仿真
4.1 仿真过程
(1)设GPS 接收机观测到的伪距方程为:
伪距定位方程组含两个未知数,三个方程,方程数大于未知量数,通过牛顿迭代与最小二乘法求解。
sat1=[</