利用泰勒展开和牛顿迭代求解定位方程matlab仿真

1.实验名称

利用泰勒展开和牛顿迭代求解定位方程

2.实验背景

已知GPS接收机观测到的伪距方程,且伪距定位方程组是非线性方程组,同时方程数大于未知量数(即为超定方程),利用泰勒展开和牛顿迭代对定位方程进行求解,并对仿真结果进行分析。

3.实验原理

3.1牛顿迭代法求解非线性方程组

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3.2伪距

伪距是GPS接收机对卫星信号的一个最基本的距离测量值。伪距是由于卫星时钟与接收机时钟不同步产生的,测得的距离含有时钟误差和大气层折射延迟,而非“真实距离”,故称为伪距。

3.3 伪距定位原理

定义传播时延、星钟误差校正后的伪距观测方程为:
在这里插入图片描述

3.4 伪距定位算法

在得到N个卫星的观测量后,即可得到N个伪距测量方程。采用最小二乘法,N个非线性方程组的解算可以分为 5 步:
(1)数据准备与设计初值:
测量伪距,为接收机当前位置及接收机钟差设置初值。初值的选择:设置上次定位结果、用户输入位置和时间、卫星坐标均值在地面上的投影,或者全部设置为 0。
(2)非线性方程组线性化:
在当前历元k次牛顿迭代中,将方程进行线性化(考虑第n个方程):
在这里插入图片描述
在这里插入图片描述
全部观测方程也可以表示成矩阵方程组的形式。
(3)求解线性方程组:
利用最小二乘法求解GPS伪距定位线性矩阵方程组,若各个卫星测量值的误差方差以及权重已被确定,则可采用加权最小二乘算法求解。
(4)更新非线性方程组的根:
对接收机位置坐标及钟差进行更新。
在这里插入图片描述
(5)判断牛顿迭代的收敛性:
在这里插入图片描述

4.matlab仿真

4.1 仿真过程

(1)设GPS 接收机观测到的伪距方程为:
在这里插入图片描述
伪距定位方程组含两个未知数,三个方程,方程数大于未知量数,通过牛顿迭代与最小二乘法求解。

sat1=[</
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值