【人工智能学习】【二】Softmax与分类模型

Softmax回归

上篇文章线性回归本质上是回归问题。本篇要介绍的是一个分类问题。softmax回归是一个单层神经网络,在前一篇博客中,输入数据的维度是2,这里以Fashion-MNIST数据集为例,输入的是2828的图像。将2828的图像像素拉直,得到的是输入784维度的输入数据。所以本例当中输入数据的维度为784,那么上一篇文章中的W WW矩阵维度也就变成784维。
上篇文章线性回归当中,输出的是1维数据,在Softmax回归中,输出的是多维的数据,具体来说就是图片的类别,这个类别可能是猫、狗等。如果结果标签有10类,那么W WW矩阵的大小应该为784*10。

以输入维度4,输出维度3为例:
o1=x1w11+x2w21+x3w31+x4w41+b1 o_1=x_1w_{11}+x_2w_{21}+x_3w_{31}+x_4w_{41}+b_1
o
1

=x
1

w
11

+x
2

w
21

+x
3

w
31

+x
4

w
41

+b
1

o2=x1w12+x2w22+x3w32+x4w42+b2 o_2=x_1w_{12}+x_2w_{22}+x_3w_{32}+x_4w_{42}+b_2
o
2

=x
1

w
12

+x
2

w
22

+x
3

w
32

+x
4

w
42

+b
2

o3=x1w13+x2w23+x3w33+x4w43+b3 o_3=x_1w_{13}+x_2w_{23}+x_3w_{33}+x_4w_{43}+b_3
o
3

=x
1

w
13

+x
2

w
23

+x
3

w
33

+x
4

w
43

+b
3

既然是分类问题,那么输出结果必然要体现数据的类别。这里只是简单的直接对计算结果进行了输出,我们可以简单的规定取o1 o_1o
1

、o2 o_2o
2

、o3 o_3o
3

中最大的那个来决定类别。比如o1 o_1o
1

、o2 o_2o
2

、o3 o_3o
3

值分别为0.1、100、1,我们就说样本x xx属于类别2。
直接对结果进行输出会带来两个问题:

输出数据的范围无法确定
由于类别是一个离散的标签,我们如何定义类别对应的输出结果的范围呢?比如猫属于1至10,狗属于10-100。
这里就要提到Softmax
yi=ei∑nj=1ej,n=len(labels) y_i=\frac{ei}{\sum_{j=1}ne^j},{n=len(labels)}
y
i


j=1
n

e
j

e
i


,n=len(labels)

对照上例进行一下分解
o1ˊ=eo1eo1+eo2+eo3 \acute{o_1}=\frac{e{o_1}}{e{o_1}+e{o_2}+e{o_3}}
o
1

ˊ

e
o
1

+e
o
2

+e
o
3

e
o
1

o2ˊ=eo2eo1+eo2+eo3 \acute{o_2}=\frac{e{o_2}}{e{o_1}+e{o_2}+e{o_3}}
o
2

ˊ

e
o
1

+e
o
2

+e
o
3

e
o
2

o3ˊ=eo3eo1+eo2+eo3 \acute{o_3}=\frac{e{o_3}}{e{o_1}+e{o_2}+e{o_3}}
o
3

ˊ

e
o
1

+e
o
2

+e
o
3

e
o
3

这样的好处是将输出限定在[0,1] [0,1][0,1]范围内,最后分类结果以概率形式输出。显然o1ˊ+o2ˊ+o3ˊ=1 \acute{o_1}+\acute{o_2}+\acute{o_3}=1
o
1

ˊ

+
o
2

ˊ

+
o
3

ˊ

=1
最终得到的是如下式子
oi=xiW+b oi=xiW+b
o
i
=x
i
W+b

yiˊ=softmax(oi) \acute{yi}=softmax(oi)
y
i

ˊ

=softmax(o
i
)

X取小批量的话
O=XW+b O=XW+b
O=XW+b

Yˊ=softmax(O) \acute{Y}=softmax(O)
Y
ˊ
=softmax(O)

交叉熵损失函数

在分类问题中,不需要精确计算类别的概率,只需要被预测的类别的概率比其他的高就可以。是一种非精确的预测。这种特点使得使用更适合衡量两个概率分布差异的测量函数,交叉熵损失函数。交叉熵描述的是实际输出的概率和预期应输出的概率之间的距离
H=−∑xp(x)logq(x) H=-{\sum_{x}}p(x)logq(x)
H=−
x


p(x)logq(x)

比如预期输出p=(1,0,0) p=(1,0,0)p=(1,0,0),每次mini-batch取2,实际输出q1=(0.5,0.2,0.3),q2=(0.8,0.1,0.1) q_1=(0.5,0.2,0.3),q_2=(0.8,0.1,0.1)q
1

=(0.5,0.2,0.3),q
2

=(0.8,0.1,0.1),那么
H1(p,q1)=−(1∗log0.5+0∗log0.2+0∗log0.3)=0.3 H_1(p,q_1)=-(1log{0.5}+0log{0.2}+0log{0.3})=0.3H
1

(p,q
1

)=−(1∗log0.5+0∗log0.2+0∗log0.3)=0.3
H2(p,q2)=−(1∗log0.8+0∗log0.1+0∗log0.1)=0.1 H_2(p,q_2)=-(1
log{0.8}+0log{0.1}+0log{0.1})=0.1H
2

(p,q
2

)=−(1∗log0.8+0∗log0.1+0∗log0.1)=0.1
再取平均熵
0.3+0.12=0.2 \frac{0.3+0.1}{2}=0.2
2
0.3+0.1

=0.2

交叉熵还有另一种形式
H=−∑x(p(x)logq(x)+(1−p(x))log(1−q(x))) H=-{\sum_{x}}(p(x)logq(x)+(1-p(x))log(1-q(x)))
H=−
x


(p(x)logq(x)+(1−p(x))log(1−q(x)))

pytorch代码

手写实现

Fashion-MNIST数据集获取
torchvision包是PyTorch深度学习框架中用来构建计算机视觉模型的工具,主要由以下几个模块构成:

torchvision.datasets: 一些加载数据的函数及常用的数据集接口;
torchvision.models: 包含常用的模型结构(含预训练模型),例如AlexNet、VGG、ResNet等;
torchvision.transforms: 常用的图片变换,例如裁剪、旋转等;
torchvision.utils: 其他的一些有用的方法。
包引入

from IPython import display
import matplotlib.pyplot as plt

import torch
import torchvision
import torchvision.transforms as transforms
import time
import numpy as np

import sys
sys.path.append("/home/kesci/input")
import d2lzh as d2l
1
2
3
4
5
6
7
8
9
10
11
12
获取数据集,下载到本地

mnist_train = torchvision.datasets.FashionMNIST(root=’/home/kesci/input/FashionMNIST2065’, train=True, download=True, transform=transforms.ToTensor())
mnist_test = torchvision.datasets.FashionMNIST(root=’/home/kesci/input/FashionMNIST2065’, train=False, download=True, transform=transforms.ToTensor())
1
2
如果没有参数transform=transforms.ToTensor(),则读取出来的是PIL类型的图片

class torchvision.datasets.FashionMNIST(root, train=True, transform=None, target_transform=None, download=False)
root(string)– 数据集的根目录,其中存放processed/training.pt和processed/test.pt文件。
train(bool, 可选)– 如果设置为True,从training.pt创建数据集,否则从test.pt创建。
download(bool, 可选)– 如果设置为True,从互联网下载数据并放到root文件夹下。如果root目录下已经存在数据,不会再次下载。
transform(可被调用 , 可选)– 一种函数或变换,输入PIL图片,返回变换之后的数据。如:transforms.RandomCrop。
target_transform(可被调用 , 可选)– 一种函数或变换,输入目标,进行变换。

我们可以通过下标来访问任意一个样本

feature, label = mnist_train[0]
print(feature.shape, label) # Channel x Height x Width
1
2
3
torch.Size([1, 28, 28]) 9

数字标识的类别与具体描述的映射

def get_fashion_mnist_labels(labels):
text_labels = [‘t-shirt’, ‘trouser’, ‘pullover’, ‘dress’, ‘coat’,
‘sandal’, ‘shirt’, ‘sneaker’, ‘bag’, ‘ankle boot’]
return [text_labels[int(i)] for i in labels]
1
2
3
4
5
6
读取本地的数据集

读取数据训练集和测试集

batch_size = 256
num_workers = 4

train_iter = torch.utils.data.DataLoader(mnist_train, batch_size=batch_size, shuffle=True, num_workers=num_workers)
test_iter = torch.utils.data.DataLoader(mnist_test, batch_size=batch_size, shuffle=False, num_workers=num_workers)
1
2
3
4
5
6
模型初始化

10类,每张图的像素数28*28=784

num_inputs = 784
num_outputs = 10

W = torch.tensor(np.random.normal(0, 0.01, (num_inputs, num_outputs)), dtype=torch.float)
b = torch.zeros(num_outputs, dtype=torch.float)
W.requires_grad_(requires_grad=True)
b.requires_grad_(requires_grad=True)
1
2
3
4
5
6
7
8
W的shape
torch.Size([784, 10])
b的shape
torch.Size([10])
定义softmax

def softmax(X):
# 对X矩阵中的每一个元素进行e的幂操作
# 输入的X
#tensor([[0.0094, 0.3445, 0.2100, 0.7920, 0.7117],
# [0.8559, 0.2465, 0.4939, 0.7290, 0.2683]])
#输出的X_exp
#tensor([[1.0095, 1.4113, 1.2337, 2.2078, 2.0374],
# [2.3536, 1.2796, 1.6386, 2.0730, 1.3078]])
X_exp = X.exp()
# 按照相同的行求和,并在结果中保留行特征,输出的结果是n1的矩阵。如果keepdim=False,输出的是1n的矩阵
partition = X_exp.sum(dim=1, keepdim=True)
# print("X size is ", X_exp.size())
# print("partition size is ", partition, partition.size())
return X_exp / partition # 这里应用了广播机制
1
2
3
4
5
6
7
8
9
10
11
12
13
14
利用上面的softmax定义网络

def net(X):
return softmax(torch.mm(X.view((-1, num_inputs)), W) + b)
1
2
定义交叉熵(待优化)

def cross_entropy(y_hat, y):
return - torch.log(y_hat.gather(1, y.view(-1, 1)))
1
2
定义准确率

def accuracy(y_hat, y):
return (y_hat.argmax(dim=1) == y).float().mean().item()

def evaluate_accuracy(data_iter, net):
acc_sum, n = 0.0, 0
for X, y in data_iter:
acc_sum += (net(X).argmax(dim=1) == y).float().sum().item()
n += y.shape[0]
return acc_sum / n
1
2
3
4
5
6
7
8
9
训练模型

num_epochs, lr = 5, 0.1

本函数已保存在d2lzh_pytorch包中方便以后使用

def train_ch3(net, train_iter, test_iter, loss, num_epochs, batch_size,
params=None, lr=None, optimizer=None):
for epoch in range(num_epochs):
train_l_sum, train_acc_sum, n = 0.0, 0.0, 0
for X, y in train_iter:
y_hat = net(X)
l = loss(y_hat, y).sum()

        # 梯度清零
        if optimizer is not None:
            optimizer.zero_grad()
        elif params is not None and params[0].grad is not None:
            for param in params:
                param.grad.data.zero_()
        
        l.backward()
        if optimizer is None:
            d2l.sgd(params, lr, batch_size)
        else:
            optimizer.step() 
        
        
        train_l_sum += l.item()
        train_acc_sum += (y_hat.argmax(dim=1) == y).sum().item()
        n += y.shape[0]
    test_acc = evaluate_accuracy(test_iter, net)
    print('epoch %d, loss %.4f, train acc %.3f, test acc %.3f'
          % (epoch + 1, train_l_sum / n, train_acc_sum / n, test_acc))

train_ch3(net, train_iter, test_iter, cross_entropy, num_epochs, batch_size, [W, b], lr)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
模型预测

X, y = iter(test_iter).next()

true_labels = d2l.get_fashion_mnist_labels(y.numpy())
pred_labels = d2l.get_fashion_mnist_labels(net(X).argmax(dim=1).numpy())
titles = [true + ‘\n’ + pred for true, pred in zip(true_labels, pred_labels)]

d2l.show_fashion_mnist(X[0:9], titles[0:9])
1
2
3
4
5
6
7
torch实现

引入包

加载各种包或者模块

import torch
from torch import nn
from torch.nn import init
import numpy as np
import sys
sys.path.append("/home/kesci/input")
import d2lzh as d2l
from collections import OrderedDict

batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, root=’/home/kesci/input/FashionMNIST2065’)
num_inputs = 784
num_outputs = 10

class LinearNet(nn.Module):
def init(self, num_inputs, num_outputs):
super(LinearNet, self).init()
self.linear = nn.Linear(num_inputs, num_outputs)
def forward(self, x): # x 的形状: (batch, 1, 28, 28)
y = self.linear(x.view(x.shape[0], -1))
return y

net = LinearNet(num_inputs, num_outputs)

class FlattenLayer(nn.Module):
def init(self):
super(FlattenLayer, self).init()
def forward(self, x): # x 的形状: (batch, *, *, …)
return x.view(x.shape[0], -1)

net = nn.Sequential(
# FlattenLayer(),
# LinearNet(num_inputs, num_outputs)
OrderedDict([
(‘flatten’, FlattenLayer()),
# 或者写成我们自己定义的LinearNet(num_inputs, num_outputs) 也可以
(‘linear’, nn.Linear(num_inputs, num_outputs))])
)

初始化模型参数

init.normal_(net.linear.weight, mean=0, std=0.01)
init.constant_(net.linear.bias, val=0)

定义损失函数

loss = nn.CrossEntropyLoss() # 下面是他的函数原型

class torch.nn.CrossEntropyLoss(weight=None, size_average=None, ignore_index=-100, reduce=None, reduction=‘mean’)

定义优化函数

optimizer = torch.optim.SGD(net.parameters(), lr=0.1) # 下面是函数原型

class torch.optim.SGD(params, lr=, momentum=0, dampening=0, weight_decay=0, nesterov=False)

训练

num_epochs = 5
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, batch_size, None, None, optimizer)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值