算法:动态规划(二)

这篇博客探讨了如何使用动态规划(DP)解决字符串回文子串分割问题,以及在不同编程题目中DP的应用,如单词拆分、最大乘积子数组、打家劫舍系列问题。通过实例解析,展示了如何有效地构建DP状态和转移方程,优化算法效率。此外,还强调了审题和边界条件处理的重要性。
摘要由CSDN通过智能技术生成

- 分割字符串

给你一个字符串 s,请你将 s 分割成一些子串,使每个子串都是 回文串 。返回 s 所有可能的分割方案。
回文串 是正着读和反着读都一样的字符串。

class Solution {
private:
    vector<string> tempanswer;
    vector<vector<string>> result;

public:
    vector<vector<string>> partition(string s) {
        int n = s.size();
        vector<vector<bool>>isTenetdp(n, vector<bool>(n, false));
        vector<vector<int>>dp(n, vector<int>(n, 0));
        for(int i = 0; i < n; i++){
            isTenetdp[i][i] = true;
            dp[i][i] = 1;
            if(i < n - 1 && s[i] == s[i + 1])
                isTenetdp[i][i + 1] = true;
        }

    }

    
};

经验:
1、第一次审题的时候出现了误差,以为是返回所有的分割方法数
2、DFS+DP的想法很独特,确实如果要返回所有的分割方法的话确实是应该使用DFS,而DP主要是为了降低判断回文串的时间复杂度 。

- 单词拆分

给定一个非空字符串 s 和一个包含非空单词的列表 wordDict,判定 s 是否可以被空格拆分为一个或多个在字典中出现的单词。
说明:
拆分时可以重复使用字典中的单词。
你可以假设字典中没有重复的单词。

class Solution {
public:
    bool wordBreak(string s, vector<string>& wordDict) {
        int length = s.size();
        vector<bool>dp(length + 1, false);
        dp[0] = true;
            
        for(int i = 1; i  <= length; i++){
            for(int j = 0; j <= i; j++){
                if(dp[j] && isSplited(s.substr(j, i - j), wordDict)){
                    dp[i] = true;
                    break;
                }
            }                 
        } 
        return dp[length];
    }

    bool isSplited(string s, vector<string>& wordDict){
        int n = wordDict.size();
        for(int i = 0; i < n; i++)
            if(wordDict[i] == s)
                return true;
        return false;
    }
};

经验:
1、又是DP三分钟,调边界一年的问题
2、注意Python的嵌套条件语句习惯请不要带到C++里,说多了都是泪。。习惯所有控制语句都加上括号应该可以有效避免这个问题,虽然看上去代码行数可能会变长。

  • 乘积最大子数组

给你一个整数数组 nums ,请你找出数组中乘积最大的连续子数组(该子数组中至少包含一个数字),并返回该子数组所对应的乘积。

class Solution {
public:
    int maxProduct(vector<int>& nums) {
        int n = nums.size();
        vector<vector<long>>dp(n, vector<long>(2));
        for(int i = 0; i < n; i++){
            dp[i][0] = dp[i][1] = nums[i];
        }

        for(int i = 1; i < n; i++){
            long temp = nums[i];
            long a = temp * dp[i - 1][0];
            long b = temp * dp[i - 1][1];
            dp[i][0] = max(a, max(b, temp));
            dp[i][1] = min(a, min(b, temp));
        }

        long result = LONG_MIN;
        for(int i = 0; i < n; i++)
            if(dp[i][0] > result)
                result = dp[i][0];
        return result;
    }

};

经验:
1、第一次写出这种shape是<n, 2>的DP题,值得纪念。
2、algorithm包中的max函数只能比较同样类型的数。不能int和long互相比。
3、最大值

T Max(T x, T y, T z)
{
	return x > y ? (x > z ? x : z) : (y > z ? y : z);
}

- 打家劫舍

你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。
给定一个代表每个房屋存放金额的非负整数数组,计算你 不触动警报装置的情况下 ,一夜之内能够偷窃到的最高金额。

class Solution {
public:
    int rob(vector<int>& nums) {
        int n = nums.size();
        if(n == 1)
            return nums[0];
        else if(n == 0)
            return 0;
        else if(n == 2)
            return max(nums[0], nums[1]);
        
        vector<int>dp(n);
        dp[0] = nums[0];
        dp[1] = max(nums[0], nums[1]);
        for(int i = 2; i < n; i++){
            dp[i] = max(dp[i - 1], nums[i] + dp[i - 2]);
        }
        return dp[n - 1];
    }
};

经验:
1、水题,虽然最开始错误理解成了是奇数和偶数

- 打家劫舍 II

你是一个专业的小偷,计划偷窃沿街的房屋,每间房内都藏有一定的现金。这个地方所有的房屋都 围成一圈 ,这意味着第一个房屋和最后一个房屋是紧挨着的。同时,相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警 。
给定一个代表每个房屋存放金额的非负整数数组,计算你 在不触动警报装置的情况下 ,今晚能够偷窃到的最高金额。

class Solution {
public:
    int rob(vector<int>& nums) {
        int n = nums.size();
        if(n == 1)
            return nums[0];
        vector<int>a(n);
        vector<int>b(n);
        for(int i = 0; i < n - 1; i++){
            a[i] = nums[i];
            b[i] = nums[i + 1];
        }
            
        return max(rob_origin(a), rob_origin(b));
    }

    int rob_origin(vector<int>& nums) {
        int n = nums.size();
        if(n == 1)
            return nums[0];
        else if(n == 0)
            return 0;
        else if(n == 2)
            return max(nums[0], nums[1]);
        
        vector<int>dp(n);
        dp[0] = nums[0];
        dp[1] = max(nums[0], nums[1]);
        for(int i = 2; i < n; i++){
            dp[i] = max(dp[i - 1], nums[i] + dp[i - 2]);
        }
        return dp[n - 1];
    }
};

经验:
1、给想复杂了,,<n, 2>的DP上头了然后一直没有想到直接拆成两种不同的数列分别求一遍然后取大的那个即可。。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值