机器学习基础词汇合集

机器学习基础词汇合集

写这篇文章的原因是因为本人最近也在学习机器学习方面的相关知识,但是由于之前没有接触过相关的内容,对机器学习的一些相关词汇以及基础知识都不太了解,所以整理出一篇机器学习基础词汇合集来进行记录,以便自己后期遗忘的时候再来查看复习,同时也把这篇文章分享出来供大家查看。(后续会根据本人学习情况,对本文不断补充更新)

  • 图像分类(Image Classification):判别图中物体是什么,比如是猫还是狗;
  • 语义分割(Semantic Segmentation):对图像进行像素级分类,预测每个像素属于的类别,不区分个体;
  • 目标检测(Object Detection):寻找图像中的物体并进行定位;
  • 实例分割(Instance Segmentation):定位图中每个物体,并进行像素级标注,区分不同个体;

循环神经网络:(Recurrent Neural Network,RNN)一般是指时间递归神经网络而非结构递归神经网络(Recursive Neural Network),其主要用于对序列数据进行建模。RNN对具有序列特性的数据非常有效,它能挖掘数据中的时序信息以及语义信息,在解决语音识别、语言模型、机器翻译以及时序分析等NLP领域有所突破。(符合时间顺序、逻辑顺序或者其他顺序的就叫做序列特性,人类的话,语音,股票等)

RNN之所以称为循环神经网络,即一个序列当前的输出与前面的输出也有关。具体的表现形式为网络对前面的信息进行记忆并应用于当前输出的计算中,即隐藏层之间的节点不再无连接而是有连接的,并且隐藏层的输入不仅包括输入层的输出还包括上一时刻隐藏层的输出。理论上,RNN能够对任何长度的序列数据进行处理。但在实践中,为了降低复杂性往往假设当前的状态只与前面的几个状态相关。

全连接层:(fully connected layers,FC)在整个卷积神经网络中起到“分类器”的作用。如果说卷积层、池化层和激活函数层等操作时将原始数据映射到隐层特征空间的话,全连接层则起到将学到的“分布式特征表示”映射到样本标记空间的作用。在实际使用中,全连接层可以由卷积操作实现:

对前层是全连接的全连接层可以转化为卷积核为1×1的卷积;而前层是卷积层的全连接层可以转化为卷积核为h×w的全局卷积,h和w分别为前层卷积结果的高和宽

全连接的核心操作就是矩阵向量乘积 y=Wx

全连接层可以整合卷积层或者池化层中具有类别区分性的局部信息。

类内方差(within-class variance)是指在一个分类问题中,某个类别内部数据点的离散程度。类内方差是由该类别中每个数据点与该类别的均值之间的距离平方和除以该类别中数据点的数量得到的。

类内方差的计算可以帮助我们了解类别内部数据点的分布情况,以及该类别是否存在内部结构和不均衡性。如果一个类别内部的数据点比较分散,其类内方差就会比较大,反之则会较小,一般来说,我们希望同一类别的数据点尽可能地相似,即类内方差尽可能要小。

K邻近算法:(K-nearest neighbors algorithm)是一种常见的监督学习算法,用于分类和回归问题。它基于一个简单的想法:如果一个样本在特征空间中的k个最近邻居中的大多数属于某个类别,则该样本也属于该类别。

详细步骤为:

  1. 准备数据集 :从给定数据集中选择特征和标签
  2. 计算距离:计算待分类样本与每个训练样本之间的距离,可以使用欧式距离,曼哈顿距离等方式
  3. 选择k值:选择一个合适的k值,即在特征空间中选择k个最邻近的样本
  4. 统计类别:统计这k个最近邻居中各个类别的数量
  5. 分类:将待分类样本归为数量最多的类别。

k值过小,容易导致模型过拟合,k值过大,容易导致欠拟合。

使用常见分布进行建模是指在统计学和概率论中,根据实际数据的特点,选择适当的概率分布来描述这些数据的分布规律。常见的概率分布包括正态分布、泊松分布、指数分布等。

下面来详细解释一下常见的几种概率分布及其在建模中的应用:

  1. 正态分布(Normal Distribution):正态分布是最常见的连续概率分布,其特点是呈钟型曲线,具有对称性。在建模中,许多自然现象都可以近似地用正态分布来描述,比如身高、体重等。在实际应用中,常常使用正态分布来对数据进行拟合和预测。
  2. 泊松分布(Poisson Distribution):泊松分布通常用于描述单位时间或单位空间内随机事件发生次数的分布情况,比如某个时间段内电话的呼入次数、一天内发生交通事故的次数等。在建模中,泊松分布常用于描述稀有事件的发生情况。
  3. 指数分布(Exponential Distribution):指数分布常用于描述事件发生的时间间隔,比如设备的寿命、客户到达的间隔时间等。在建模中,指数分布可以用来估计事件的发生概率分布,从而进行风险评估和决策制定。
  4. 二项分布(Binomial Distribution):二项分布用于描述n次独立重复的是/非试验中成功次数的分布情况,比如抛硬币的结果、产品合格品率等。在建模中,二项分布常用于描述离散型随机变量的分布情况。

选择适当的概率分布进行建模可以帮助我们更好地理解数据的特点、进行参数估计、预测未来事件的可能性,并为决策提供依据。在实际应用中,我们需要根据数据的实际情况和分布特点来选择合适的概率分布进行建模。

平移不变特征(Translation Invariant Features)指的是在输入数据中,对于空间位置的改变并不影响特征的提取。也就是说,如果一个特征是平移不变的,那么在对输入数据进行平移操作时,这个特征的值不会发生改变。

例如,对于图像分类问题,我们希望分类器能够识别出相同类别的图像,不论这些图像在何处出现。如果我们想要设计一个平移不变的特征,可以选择局部特征描述符,比如SIFT(尺度不变特征转换)或SURF(加速稳健特征)等,在不同位置上提取图像关键点和特征,并通过特征匹配来实现图像分类。

平移不变特征的优点在于,它们能够提高模型的鲁棒性和泛化能力,使得模型能够更好地处理输入数据的变化。例如,在人脸识别领域,使用平移不变特征可以让算法识别出人脸的不同部分,并且对于不同角度、光照条件下的人脸也具有较好的识别效果。

方差敏感(Variance Sensitivity)是指在数据处理、特征选择和模型训练中,对于输入数据中微小变化的敏感程度。具体来说,如果某个算法或模型对输入数据的微小变化非常敏感,那么它就被认为是方差敏感的。

在机器学习和数据挖掘中,方差敏感通常是一个需要关注的重要问题。一个方差敏感的模型可能会对输入数据中的噪声或微小扰动产生较大的反应,导致模型的鲁棒性降低,泛化能力减弱。这可能导致模型在新数据上表现不佳,甚至发生过拟合的情况。

一些常见的机器学习算法,比如决策树、K近邻(K-Nearest Neighbors)等,在处理方差敏感性方面可能会表现得更为明显。例如,对于决策树算法,如果输入数据中的微小变化导致树结构发生了较大改变,那么模型的预测结果也可能会有显著变化。

为了减轻方差敏感性带来的问题,可以采取以下一些方法:

  1. 特征选择和特征提取:选择对输出结果影响较大的特征,减少无关紧要的特征对模型的影响。
  2. 正则化:在模型训练中引入正则化项,控制模型的复杂度,减少对输入数据中噪声的敏感度。
  3. 集成学习:使用集成学习方法,如随机森林或梯度提升树,通过多个模型的组合来减少单个模型的方差敏感性。

总之,方差敏感性是一个需要引起重视的问题,特别是在对抗噪声和提高模型鲁棒性方面。通过采取适当的方法来减轻方差敏感性,可以提高模型的泛化能力和实际应用价值。

图像中类的特征提取是指从图像数据中提取出用于描述和区分不同类别的特征。这些特征可以是图像的局部特征、全局特征或语义特征等。支持特征是指在图像分类或识别任务中,对每个类别所提取的代表性特征,它们有助于区分不同类别并支持模型做出正确的分类决策。确定类中心则是找到每个类别的代表点或者代表性特征,通常用于聚类任务中。

在图像中类的特征提取过程中,可以采用多种方法,包括以下几种常见的特征提取技术:

  1. 局部特征描述符:比如SIFT(尺度不变特征转换)、SURF(加速稳健特征)等,通过在图像中检测关键点,并计算这些关键点周围的局部特征描述符,用于表示图像中的局部信息。
  2. 全局特征:如颜色直方图、纹理特征、形状特征等,用于描述整幅图像的整体信息。
  3. 深度学习特征:通过卷积神经网络(CNN)等深度学习模型提取图像的高级语义特征,例如通过在预训练的CNN模型中提取卷积层特征或全连接层特征。

支持特征则可以通过特征选择、特征权重、特征重要性等方法来确定。一般来说,支持特征应该能够在不同类别之间有较大的差异性,有利于模型进行准确的分类。

确定类中心在聚类任务中特别重要,常见的方法包括K均值聚类、层次聚类等。在K均值聚类中,类中心即为每个类别的聚类中心,它代表了该类别的特征空间的中心位置。确定类中心的过程通常涉及迭代更新,直到满足收敛条件为止。

综合来看,图像中类的特征提取需要考虑到图像的局部和全局信息,支持特征应当能够有效地区分不同类别,而确定类中心则是聚类任务中的重要步骤,它代表了每个类别的代表性特征。这些步骤对于图像分类、识别和聚类等任务都具有重要意义。

特征聚合是指将多个特征向量或特征图组合成一个更有意义的特征表示的过程。在机器学习和计算机视觉中,特征聚合通常用于提高模型的表现和泛化能力。特征聚合可以通过多种方式实现,以下是一些常见的特征聚合方法:

  1. 拼接(Concatenation):将多个特征向量或特征图沿着某个维度(例如通道维度)拼接起来,形成一个更大的特征向量或特征图。这种方法通常用于将不同类型的特征组合起来使用,例如将颜色直方图和纹理特征拼接起来。
  2. 加权求和(Weighted Sum):将多个特征向量或特征图加权求和,得到一个加权后的特征向量或特征图。权重可以通过训练学习得到,也可以手动设定。这种方法通常用于将多个相似但略有差异的特征进行融合,例如将不同尺度或不同方向的特征进行加权求和。
  3. 最大池化(Max Pooling):对于多个特征图的每个像素位置,选择它们在该位置上的最大值作为新的特征值。这种方法通常用于提取图像中的最显著特征,例如目标检测任务中提取物体的位置和大小信息。
  4. 平均池化(Average Pooling):对于多个特征图的每个像素位置,选择它们在该位置上的平均值作为新的特征值。这种方法通常用于减少特征图的维度和大小,同时保留一定的特征信息。
  5. 线性组合(Linear Combination):对于多个特征向量或特征图,将它们进行线性组合,得到一个新的特征向量或特征图。这种方法通常用于对特征进行降维和融合,以及对特征空间进行变换和扩展。

特征聚合的目的是将多个特征进行整合,提高模型的表现和泛化能力。具体的特征聚合方法需要根据具体任务和数据情况来确定,一般需要根据结果进行调整和验证。

分类任务回归任务在输入数据的平移不变性(translation invariance)和平移协变性(translation covariance)方面的要求是不同的。

在分类任务中,我们希望模型对于输入数据的平移是不敏感的,即无论输入数据在图像中的位置如何,都能够正确分类。这是因为图像中物体的位置不应该影响它们的类别标签。如果模型对于输入数据的平移敏感,那么就会导致模型在测试时出现较高的误差率。

而在回归任务中,我们通常需要模型对于输入数据的平移具有一定的敏感性,即输入数据发生平移时,输出结果也会相应地发生平移。这是因为回归任务通常需要输出与输入数据位置相关的结果,例如目标检测中的目标位置和大小等信息。如果模型对于输入数据的平移不敏感,那么就会导致模型输出的位置和大小信息不准确,从而影响任务结果的质量。

因此,分类任务需要模型具有平移不变性,而回归任务需要模型具有平移协变性。在实际应用中,我们可以通过对输入数据进行数据增强、使用卷积神经网络(CNN)等方法来提高模型的平移不变性和平移协变性,从而提高模型的表现和泛化能力。

扩散模型(Diffusion Model)是一种用于推断图像中像素之间相互作用的概率模型。它基于马尔可夫随机场(Markov Random Field)的思想,通过建模像素之间的局部相关性来进行图像分析和处理。

在传统的目标检测中,通常使用滑动窗口或候选框生成与分类等方法来检测目标。这些方法需要大量的标注数据进行训练,对于少样本目标检测任务可能不适用。而扩散模型可以通过学习图像中像素之间的关系,从图像的全局信息中获取目标目标区域的特征,从而实现少样本目标检测。

扩散模型可以应用到少样本目标检测中的一个例子是Few-Shot Object Detection with Attention-RPN(ARPN)模型。ARPN模型基于扩散模型,在少样本目标检测任务中取得了较好的效果。

ARPN模型首先使用预训练的卷积神经网络提取图像特征,然后利用扩散模型对特征进行建模。在训练阶段,模型通过使用少量标注样本进行有监督的学习,从而学习到图像中目标的位置和特征。在测试阶段,通过利用学习到的全局信息和注意力机制,ARPN模型可以在少样本的情况下准确地检测出目标。

通过扩散模型,ARPN模型能够利用图像中的全局信息,避免了传统目标检测方法中需要大量标注数据的问题。它通过学习像素之间的相互关系,能够在少样本目标检测任务中获得更好的性能。

扩散模型可以通过学习图像中像素之间的关系,从图像的全局信息中获取目标目标区域的特征

扩散模型是一种可以通过学习图像中像素之间的关系来获取目标区域特征的方法。它利用图像的全局信息,即整张图像的内容和结构,来帮助识别和定位目标。

在图像中,像素之间存在一定的相关性和相互作用。扩散模型能够通过分析这些像素之间的关系,了解它们的空间位置、灰度值等特征之间的相互依赖关系。

通过学习图像中像素之间的关系,扩散模型可以获取更多的全局信息,而不仅仅依赖于局部信息。这有助于提高对目标区域的理解和识别能力。

具体而言,扩散模型可以通过以下步骤来实现:

  1. 特征传播:扩散模型会根据像素之间的相互作用,逐步更新和调整特征表示。它可以通过像素之间的关系将特征在图像中传播和扩散,从而获取更多的全局信息。
  2. 特征整合:扩散模型可以利用像素之间的关系将不同位置的特征进行整合和融合。这样可以得到更具一致性和完整性的特征表示,有助于提取目标区域的特征。
  3. 全局一致性:扩散模型能够通过学习图像中像素之间的关系,获取图像的全局一致性信息。这有助于更好地理解图像中的目标区域,并准确地捕捉目标的特征。

建模是指将一个实际问题或系统抽象化为数学或计算机模型的过程。在建模过程中,我们根据实际问题的特征和要求,选择适当的数学工具、统计方法或计算机算法来描述和解决这个问题。

建模的目的是将复杂的现实世界问题简化为可计算的形式,以便进行分析、预测、优化或决策。通过建模,我们可以更好地理解问题的本质、关键影响因素和相互关系,从而得出对问题的解释、理论或解决方案。

在建模过程中,通常包括以下几个步骤:

  1. 确定建模目标:明确需要解决的问题或达到的目标。例如,预测销售趋势、优化生产计划或评估风险等。
  2. 收集数据:收集与问题相关的数据,可能包括实验数据、观测数据、调查数据等。数据的质量和适用性对建模结果至关重要。
  3. 建立假设:基于对问题的理解和背景知识,提出一些假设来描述问题的关键因素、规律或机制。这些假设可以是定量的数学公式、统计模型或算法流程等。
  4. 选择适当的模型:根据问题的特点和数据的性质,选择适合的数学模型、统计方法或计算机算法来描述问题并进行计算。常见的模型包括线性回归模型、神经网络模型、决策树模型等。
  5. 参数估计与模型验证:利用收集到的数据,对模型中的参数进行估计,并通过一定的准则或指标对模型进行验证和评估。这可以帮助我们了解模型的拟合程度和预测能力。
  6. 模型应用和解释:根据建立的模型,进行问题的分析、预测或优化等。同时,对模型的结果进行解释和理解,将其转化为实际问题的可行解决方案或决策依据。

ARPN模型是基于卷积神经网络和扩散模型的图像语义分割模型。其主要思路是首先使用预训练的卷积神经网络提取图像特征,然后利用扩散模型对特征进行建模,进而实现对图像中不同物体的语义分割。

具体步骤如下:

  1. 预训练卷积神经网络:首先,我们需要使用预训练的卷积神经网络(如VGG、ResNet等)来提取输入图像的特征。这些特征通常包括不同层次的特征表示,从浅层到深层逐渐抽象和高级,以便对图像的语义信息进行更好地描述。

  2. 利用扩散模型建模特征:接着,我们使用扩散模型对卷积神经网络提取的特征进行建模。具体而言,扩散模型通过对卷积特征进行传播和整合,获取全局信息,并实现对不同物体的区域定位和分割。扩散模型可以通过以下步骤来实现:

    (1) 特征传播:扩散模型通过学习图像中像素之间的关系,逐步更新和调整特征表示。它可以通过像素之间的关系将特征在图像中传播和扩散,从而获取更多的全局信息。

    (2) 特征整合:扩散模型可以利用像素之间的关系将不同位置的特征进行整合和融合。这样可以得到更具一致性和完整性的特征表示,有助于提取目标区域的特征。

    (3) 全局一致性:扩散模型能够通过学习图像中像素之间的关系,获取图像的全局一致性信息。这有助于更好地理解图像中的目标区域,并准确地捕捉目标的特征。

  3. 语义分割:最后,我们将建模后的特征输入到分割头(segmentation head)中,以实现对不同物体的语义分割。分割头通常包括卷积层、反卷积层和softmax等操作,以将特征转化为每个像素属于不同物体的概率,从而得到图像的分割结果。

对于怎么建模,具体步骤如下:

  1. 定义扩散算子:首先,我们需要定义扩散算子,即用来描述像素之间的传递和整合关系的数学函数。常用的扩散算子包括高斯核、拉普拉斯核、均值核等。
  2. 扩散特征传播:根据定义的扩散算子,我们可以对卷积特征进行传播和整合。具体而言,对于每个像素,扩散模型会将其周围的像素特征加权平均,从而得到新的特征表示。
  3. 扩散特征整合:几次迭代后,扩散模型可以将不同位置的特征进行整合和融合,得到更具一致性和完整性的特征表示。
  4. 分割头生成分割结果:最后,我们将建模后的特征输入到分割头中,以生成图像的分割结果。分割头通常包括卷积层、反卷积层和softmax等操作,以将特征转化为每个像素属于不同物体的概率,并最终得到物体分割结果。

扩散模型是一种用于图像语义分割的方法,通过对图像中的像素进行传播和整合来获取全局信息,并实现对不同物体的区域定位和分割。下面我将详细解释扩散模型的原理和步骤。

  1. 特征传播:扩散模型通过学习图像中像素之间的关系,逐步更新和调整特征表示。具体而言,对于每个像素,扩散模型会利用像素之间的关系将特征在图像中传播和扩散,从而获取更多的全局信息。这可以通过以下步骤来实现:
    • 首先,定义一个扩散算子,该算子描述了像素之间的传递和整合关系。常见的扩散算子包括高斯核、拉普拉斯核、均值核等。
    • 然后,对于每个像素,扩散模型会根据定义的扩散算子,将其周围的像素特征按照一定的权重进行加权平均。这样可以使得每个像素能够获取到周围像素的信息,从而得到新的特征表示。这个过程可以迭代多次,以增强特征的传播效果。
  2. 特征整合:扩散模型可以利用像素之间的关系将不同位置的特征进行整合和融合,从而得到更具一致性和完整性的特征表示。这有助于提取目标区域的特征,并减少背景噪声的干扰。特征整合的步骤如下:
    • 对于每个像素,扩散模型会考虑其周围像素的特征,并将它们进行整合和融合。常见的方法是使用加权平均或者卷积操作来实现。
    • 迭代多次后,扩散模型能够将不同位置的特征进行整合,得到更具一致性和完整性的特征表示。
  3. 全局一致性:扩散模型通过学习图像中像素之间的关系,获取图像的全局一致性信息。全局一致性有助于更好地理解图像中的目标区域,并准确地捕捉目标的特征。全局一致性的实现主要包括以下方面:
    • 在特征传播和整合的过程中,扩散模型会考虑像素之间的关系,使得特征能够在图像中传递和扩散,获取更多的全局信息。
    • 扩散模型可以通过迭代多次,不断更新和调整特征表示,以提高特征的全局一致性。
    • 全局一致性还可以通过其他技术手段来实现,例如引入全局上下文信息、使用全连接层等。

少样本目标检测是指在面对目标检测任务时,只有极少量标记样本可供训练的情况下进行检测学习。这种情况在实际场景中经常遇到,因为标记大量目标实例所需的成本较高,尤其是对于新兴领域或特定应用场景而言更为普遍。

前景:

  1. 数据稀缺性挑战:少样本目标检测的前景之一是解决数据稀缺性挑战。传统的目标检测算法通常需要大量标记数据来实现准确的检测,但实际场景中获取大规模标记数据并非易事。而少样本目标检测的前景在于通过有效的方法利用有限的标记数据,实现对目标的准确检测。
  2. 迁移学习和元学习的应用:少样本目标检测前景还体现在迁移学习和元学习的广泛应用上。这两种技术能够利用其他数据集中已有的知识来帮助模型更好地适应新的少样本目标检测任务,从而弥补数据稀缺性带来的困难。
  3. 模型设计与优化:少样本目标检测的前景还包括模型设计与优化方面的挑战。研究人员正在不断探索新的模型结构和训练策略,以应对少样本数据下的目标检测任务。例如,可以通过引入注意力机制、生成对抗网络(GAN)等技术来增强模型的泛化能力,提高在少样本情况下的检测性能。
  4. 实际应用需求:随着人工智能技术在实际应用中的广泛渗透,少样本目标检测的前景在于能够更好地满足特定应用场景下的需求,比如医疗影像分析、工业质检、无人驾驶等领域,这些领域通常都存在着标记数据稀缺的问题。

卷积(Convolution)是一种在信号处理和图像处理中广泛使用的数学运算。它为处理离散数据序列(如图像或音频)提供了一种有效的方式。

在数学上,卷积是通过将两个函数重叠并求积分得到一个新函数的过程。然而,在离散情况下,卷积变成了对两个序列进行加权求和的操作。其中一个序列称为输入序列,另一个序列称为卷积核(或滤波器)。

卷积的基本原理是将卷积核与输入序列进行元素级别的乘法,并将乘积的结果相加。这个过程可以简单地描述为卷积核在输入序列上滑动,并在每个位置处执行乘法和求和运算。这样,卷积核可以提取输入序列中的局部特征。

在图像处理中,卷积通常用于图像滤波和特征提取。例如,可以使用不同类型的卷积核对图像进行模糊、锐化、边缘检测等操作。卷积核的选择和参数设置可以影响到输出结果,因此调整卷积核的参数可以实现不同的图像处理效果。

在深度学习中,卷积神经网络(Convolutional Neural Network,CNN)是一种基于卷积操作的人工神经网络结构。CNN在图像识别、目标检测、语音识别等领域取得了很大的成功。通过使用多层卷积和池化操作,CNN可以自动学习图像中的特征,并用于分类、回归和生成等任务。

总结来说,卷积是一种在信号处理和图像处理中常用的数学运算,它通过滑动卷积核与输入序列进行乘法和求和运算,从而提取输入序列的局部特征。在图像处理和深度学习中,卷积被广泛应用于滤波、特征提取和模式识别等任务。

注:以上内容来源于网络以及作者本人的思考,如有侵权联系作者进行修改。如果对你有所帮助,请大家帮忙点赞收藏一波,谢谢大家

  • 22
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员非鱼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值