大模型应用中什么是SFT(监督微调)?
一、SFT的基本概念
监督微调(Supervised Fine-Tuning, SFT)是对已经预训练的模型进行特定任务的训练,以提高其在该任务上的表现。预训练模型通常在大量通用数据上进行训练,学到广泛的语言知识和特征。在SFT过程中,利用特定任务的数据,对模型进行进一步调整,使其更适合该任务。
二、SFT的原理
SFT的过程可以分为以下几个步骤:
-
预训练模型:
- 在大规模通用数据集(例如维基百科、书籍语料库等)上进行预训练。
- 通过无监督学习,模型学习到丰富的语言表示(如词语之间的关系、句子结构等)。
- 预训练阶段使用的目标函数通常是语言模型任务的损失函数,如语言建模损失:
L pretrain ( θ ) = − 1 N ∑ i = 1 N log P ( x i ∣ x < i ; θ ) L_{\text{pretrain}}(\theta) = -\frac{1}{N} \sum_{i=1}^{N} \log P(x_i | x_{<i}; \theta) Lpretrain(θ)=−N1i=1∑NlogP(x