(保姆级教程)Windows系统本地部署通义万相2.1视频生成模型

2025年2月25日,阿里云旗下视频生成模型万相2.1宣布开源,提供1.3B和14B两个参数规格的全部推理代码和权重代码,可以用来文生视频和图生视频。接下来我们就一起来本地部署万相模型。

在线体验

在本地部署之前我们可以先在万相官网在线体验视频生成。点击左侧导航栏中的视频生成可以体验生成视频,同时还可以体验生成图像等功能。

image-20250301220315343

本地安装

万相模型公布在Github在线仓库上,地址为https://github.com/Wan-Video/Wan2.1,可以先访问该链接去查看相关代码。

image-20250301220720271

所需环境

在下载万相源码和权重之前我们本地需要先进行配置,通常情况下我们会为新项目创建一个python运行环境,这里我们使用Anaconda来创建虚拟环境(可以点击链接下载安装),然后输入以下命令创建虚拟环境。

# 创建虚拟环境 your_name为你的环境名
conda create -n your_name python=3.10
# 进入刚刚创建好的环境
conda activate your_name

所需配置

这里说明一下,万相此次开源了1.3B和14B两个版本,两个模型所需要的显卡配置也不同,这里给出对比图,大家可以根据需要选择自己要安装的版本。

1.3B14B
参数规模13亿参数,轻量化设计140亿参数,模型复杂度高
生成质量480P分辨率,物理规律模拟能力接近闭源模型支持720P分辨率,复杂运动(如旋转、碰撞)表现更逼真。
硬件需求消费级显卡可运行(如RTX4090),仅需8G显存及以上的显卡即可运行。需专业级显卡(如A100/H100),显存占用较高,需40G显存以上的显卡集群。
推理速度5秒视频生成需5分钟左右(RTX4090)5秒视频需要10分钟(高分辨率)(需高性能CPU)
应用场景学术研究、二次模型调优、个人创作者专业影视制作、广告特效开发

克隆仓库

使用以下命令将代码仓库从线上克隆到本地。

git clone https://github.com/Wan-Video/Wan2.1
# 克隆之后cd到文件夹下
cd Wan2.1

image-20250301222142006

安装依赖

将项目克隆到本地之后,使用前面我们创建好的虚拟环境,开始下载项目运行所需依赖包。

conda activate your_name

PyTorch和CUDA安装

通常情况下,我习惯于单独安装PyTorch和CUDA,这样可以直接挑选所需版本进行安装,这里去PyTorch官网选择合适的版本进行安装,这里推荐选择PyTorch2.6和CUDA12.4版本进行安装(选择其他版本的PyTorch和CUDA一定要在安装之后进行检查,确认安装成功后即可),安装命令如下。

image-20250302192855219

# 进入项目运行环境 
conda activate your_name
# 下载PyTorch和CUDA
pip install torch==2.6.0+cu124 torchvision==0.21.0+cu124 torchaudio==2.6.0+cu124 --index-url https://download.pytorch.org/whl/cu124

安装整体依赖

在我们克隆项目之后,会在当前文件夹下出现requirements.txt文件,该文件下是项目运行所需依赖,可以看到这里是所需依赖包的版本号,但是并没有给出具体版本,在安装的时候我们还是要指定具体的版本号,这样避免出现问题,因为前面我们已经安装了PyTorch,所以前两个依赖包给注释掉,另外tokenizers包和flash-attn单独安装,使用下列命令进行安装。

image-20250301223206329

requirements.txt文件修改后上图右侧之后就可以输入下列命令安装相关依赖了

pip install -r requirements.txt
# 安装tokenizers
pip install tokenizers

flash-attn安装

上面我们有说到flash_attn包单独安装,是因为这个依赖包原本是为Linux系统适配的,由于我们是本地Windows安装,所以我们需要找第三方依赖包来安装flash_attn,这里提供第三方包的下载网址,点击之后选择自己所需要的依赖包下载到本地,然后输入以下命令进行安装(由于网络原因,如果不能下载的话,可以去公主号“非鱼AI视界”后台回复flash获得文件)。

image-20250302194353494

pip install D:\your_path\flash_attn-2.7.4.post1+cu124torch2.6.0cxx11abiFALSE-cp310-cp310-win_amd64.whl

下载模型

当以上操作都完成之后,我们就要下载所需要的模型了,由于我本地电脑只有16G显存,所以这里我下载1.3B版本的进行操作。按照官网上的说明,先下载huggingface-cli工具,然后再下载相关模型,命令如下:

pip install "huggingface_hub[cli]"
huggingface-cli download Wan-AI/Wan2.1-T2V-14B --local-dir ./Wan2.1-T2V-1.3B

也可以使用modelscope-cli工具进行下载,命令如下:

pip install modelscope
modelscope download Wan-AI/Wan2.1-T2V-14B --local_dir ./Wan2.1-T2V-1.3B

image-20250301224320454

测试万相

这里我们按照官网上提供的示例进行测试模型的输出:

image-20250302194641665

两只拟人化的猫穿着舒适的拳击装备,戴着明亮的手套,在聚光灯下的舞台上激烈战斗

python generate.py  --task t2v-1.3B --size 832*480 --ckpt_dir ./Wan2.1-T2V-1.3B --offload_model True --t5_cpu --sample_shift 8 --sample_guide_scale 6 --prompt "Two anthropomorphic cats in comfy boxing gear and bright gloves fight intensely on a spotlighted stage." --save_file your_path\test.mp4

注:直接使用上方中的命令即可,一定要选择最后的命令--save_file your_path\test.mp4,虽然官网上没有该选项,但如果不加该选项,会无法保存生成的视频。

当看到以下页面,表示视频正在生成

image-20250302114948134

当看到以下页面,表示视频生成完成:

image-20250302195008583

这里我本地的设备是RTX 4060 Ti,16G显存,耗时15分钟左右,第一次运行的话,可能会导致显卡被全部占用导致页面卡顿,后面生成的时候就不会卡顿了。

结果展示

生成之后的结果如下:

image-20250302201030735

可能出现的问题

参数问题

在使用生成命令进行视频生成的时候,如果显示下列报错,表明没有使用--save_file选项。

image-20250302114943237

依赖包问题

如果使用pip install -r requirements.txt命令安装依赖包时报错,可能是由于tokenizers包和flash_attn包,只需要重新输入pip install tokenizers,以及按照上述说明重新安装flash_attn即可。

参考链接

  1. 万相官网
  2. PyTorch官网
### 荣耀 MagicBook Pro 配置与性能 #### 处理器与图形处理能力 荣耀 MagicBook Pro 提供了强大的计算能力和出色的图形处理表现。其搭载英特尔 i5 或 i7 处理器,能够满足日常办公、游戏娱乐以及视频编辑等多种需求[^4]。此外,在显卡方面,虽然未提及独立显卡型号,但从整体性能来看,该设备足以应对主流的游戏和图像处理任务。 #### 存储与内存 在存储方案上,标准版本配备 512GB 的 PCIe 固态硬盘,提供高速的数据读写速度,适合大多数用户的文件管理和软件安装需求。然而,对于需要更大容量存储空间的用户而言,可以通过自行更换硬盘来扩展至更高规格,例如升1TB SSD 是可行的选择[^3]。与此同时,机器内置 8GB 双通道 DDR4 内存,默认频率为 2400MHz,确保多任务运行流畅无阻。 #### 屏幕显示效果 作为一款主打全面屏概念的产品,荣耀 MagicBook Pro 搭载了一块 16.1 英寸的大尺寸显示屏,具备较高的分辨率和支持广视角技术,带来沉浸式的视觉享受。这种设计不仅提升了观看体验,还使得长时间工作下的眼睛疲劳感有所缓解。 #### 特色功能——Magic-link 2.0 值得一提的是,新款机型引入了增强型互联解决方案即 Magic-link 2.0 魔法互传特性。这项创新允许用户轻松实现手机同电脑间资料(如照片、文档等)的一键式无线传输操作,极大地方便了跨平台协作场景中的效率提升[^2]。 ```python # 示例代码展示如何查询硬件基本信息 (Python) import platform def get_system_info(): system = platform.system() processor = platform.processor() architecture = platform.architecture()[0] return f"System Info:\nOS:{system}\nProcessor:{processor}\nArchitecture:{architecture}" print(get_system_info()) ```
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员非鱼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值