最优化方法1绪论

1.概论

1.1 最优化问题

分类

名称
无约束方法用于优化无约束问题
约束方法用于在约束搜索空间中寻解
多目标优化方法用于有多个目标需要优化的问题
多解方法能够找到多个解
动态方法能够找到并跟踪变化的最优解

定义:函数优化问题可以描述为:令S为 R n R^n Rn的有界子集(S为定义域), f : S → R f :S\rightarrow R f:SR为n维实值函数,所谓函数 f f f在s域上全局最小化就是寻找点 x m i n ∈ s x_{min} \in s xmins ,f(x) 在s上全局最小

规划问题:一些条件下,求解函数极大值极小值的模型称之为优化问题。其一般形式为
{ m a x f ( x ) 或 m i n f ( x ) s . t . h i ( x ) = 0 , j = 1 , 2 , . . . m g j ( x ) ≥ 0 , j = 1 , 2 , . . . m \begin{equation} \left\{ \begin{aligned} maxf(x) 或 minf(x) \\ s.t.h_i(x) =0,j =1,2,...m \\ g_j(x) \ge 0,j = 1,2,...m\\ \end{aligned} \right. \end{equation} maxf(x)minf(x)s.t.hi(x)=0,j=1,2,...mgj(x)0,j=1,2,...m

  • 如果为线性函数,那么称之为线性规划
  • x 取整数称之为整数规划

1.2 局部最优化问题

领域函数:指导如何由一个解来产生一个新解

​ 构造领域函数: x n e w = x o l d + λ ξ x_{new} = x_{old} + \lambda \xi xnew=xold+λξ , λ \lambda λ为尺度参数, ξ \xi ξ 为满足某种改良版分布的随机数或者噪声

邻域解:对于组合优化(S,F,f)问题来说,S是解的状态空间,F是可行域,f为目标函数,定义一种映射 N : s → 2 s N:s\rightarrow 2^s N:s2s,含义是对于每个解 i ∈ S i\in S iS,每个解i 的邻域构成的状态空间 S i ∈ S S_i \in S SiS,对于任意的 j ∈ s i j \in s_i jsi ,称之为邻域解

  • EX:

    TSP问题解为(1,2,3,4),那么其进行排序就是新的解,比如(1,3,2,4)等新解

局部最小值:若 ∀ j ∈ S i ∩ F \forall j \in S_i \cap F jSiF,满足 f ( j ) ≥ f ( i ) f(j) \ge f(i) f(j)f(i) 那么i称之为局部最小值(在邻域内最小)

全局最小值:若 ∀ j ∈ F \forall j \in F jF,满足 f ( j ) ≥ f ( i ) f(j) \ge f(i) f(j)f(i) 那么i称之为全局最小值


局部搜索:局部搜索是基于贪婪算法,利用领域函数进行搜索。

邻域函数搜索
搜索
比它更好的解
是否最优解
结束

1.3优化问题的复杂性

时间复杂性和空间复杂性:算法对时间和空间的需要量,可以表示为问题规模n的函数。 T ( n ) & S ( n ) T(n)\& S(n) T(n)&S(n)

相关问题

P类问题能够用确定性算法在多项式时间内求解的判定问题
NP问题用不确定多项式求解的问题
NP完全问题1.问题D属于NP类
2.NP中的任何问题都能够在多项式时间内转化为D
NP难问题满足2,但是不满足1.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值