1.概论
1.1 最优化问题
分类:
名称 | |
---|---|
无约束方法 | 用于优化无约束问题 |
约束方法 | 用于在约束搜索空间中寻解 |
多目标优化方法 | 用于有多个目标需要优化的问题 |
多解方法 | 能够找到多个解 |
动态方法 | 能够找到并跟踪变化的最优解 |
定义:函数优化问题可以描述为:令S为 R n R^n Rn的有界子集(S为定义域), f : S → R f :S\rightarrow R f:S→R为n维实值函数,所谓函数 f f f在s域上全局最小化就是寻找点 x m i n ∈ s x_{min} \in s xmin∈s ,f(x) 在s上全局最小
规划问题:一些条件下,求解函数极大值极小值的模型称之为优化问题。其一般形式为
{
m
a
x
f
(
x
)
或
m
i
n
f
(
x
)
s
.
t
.
h
i
(
x
)
=
0
,
j
=
1
,
2
,
.
.
.
m
g
j
(
x
)
≥
0
,
j
=
1
,
2
,
.
.
.
m
\begin{equation} \left\{ \begin{aligned} maxf(x) 或 minf(x) \\ s.t.h_i(x) =0,j =1,2,...m \\ g_j(x) \ge 0,j = 1,2,...m\\ \end{aligned} \right. \end{equation}
⎩
⎨
⎧maxf(x)或minf(x)s.t.hi(x)=0,j=1,2,...mgj(x)≥0,j=1,2,...m
- 如果为线性函数,那么称之为线性规划
- x 取整数称之为整数规划
1.2 局部最优化问题
领域函数:指导如何由一个解来产生一个新解
构造领域函数: x n e w = x o l d + λ ξ x_{new} = x_{old} + \lambda \xi xnew=xold+λξ , λ \lambda λ为尺度参数, ξ \xi ξ 为满足某种改良版分布的随机数或者噪声
邻域解:对于组合优化(S,F,f)问题来说,S是解的状态空间,F是可行域,f为目标函数,定义一种映射 N : s → 2 s N:s\rightarrow 2^s N:s→2s,含义是对于每个解 i ∈ S i\in S i∈S,每个解i 的邻域构成的状态空间 S i ∈ S S_i \in S Si∈S,对于任意的 j ∈ s i j \in s_i j∈si ,称之为邻域解
-
EX:
TSP问题解为(1,2,3,4),那么其进行排序就是新的解,比如(1,3,2,4)等新解
局部最小值:若 ∀ j ∈ S i ∩ F \forall j \in S_i \cap F ∀j∈Si∩F,满足 f ( j ) ≥ f ( i ) f(j) \ge f(i) f(j)≥f(i) 那么i称之为局部最小值(在邻域内最小)
全局最小值:若 ∀ j ∈ F \forall j \in F ∀j∈F,满足 f ( j ) ≥ f ( i ) f(j) \ge f(i) f(j)≥f(i) 那么i称之为全局最小值
局部搜索:局部搜索是基于贪婪算法,利用领域函数进行搜索。
1.3优化问题的复杂性
时间复杂性和空间复杂性:算法对时间和空间的需要量,可以表示为问题规模n的函数。 T ( n ) & S ( n ) T(n)\& S(n) T(n)&S(n)
相关问题:
P类问题 | 能够用确定性算法在多项式时间内求解的判定问题 |
NP问题 | 用不确定多项式求解的问题 |
NP完全问题 | 1.问题D属于NP类 2.NP中的任何问题都能够在多项式时间内转化为D |
NP难问题 | 满足2,但是不满足1. |