Faster Than Real-time Facial Alignment: A 3D Spatial Transformer Network Approach in Unconstrained P

*** 2017 ICCV 3DSTN ***

#Abstract
为了在大的位姿中提取一致的对齐点,必须在对齐步骤中考虑面部的3D结构。然而,从单个2D图像中提取3D结构通常首先需要对齐。文章提出了一种新颖的方法,即通过三维空间变压器网络(3DSTN)同时提取人脸的三维形状和语义一致的二维对齐,从而对摄像机投影矩阵和三维模型的翘曲参数进行建模。通过使用一个通用的3D模型和一个(TPS)翘曲函数,能够生成受试者特定的3D形状,而不需要一个大的3D形状基础。
Introduction
为了处理大范围的姿态变化,有必要利用人脸的三维结构信息。然而,现有的许多三维人脸建模方案存在计算时间和复杂度等诸多不足。在文章中使用一个简单平均形状以变形到输入图像,以相对较低的计算成本生成相当准确的三维模型。
Contributions
1.
采用一个简单的平均形状,并通过对图像进行对齐来使用该形状的参数化、非线性翘曲,从而能够对任何不可见的示例进行建模。
2.有效地实现在一个端到端的深度学习框架,允许对齐和3D建模任务是相互依存的
3.
实现更快的实时处理图像与最先进的性能超过其他2D和3D方法的对齐。

3D Spatial Transformer Networks

TPS和摄像机参数作用:
(这里首先说一下这两个参数的作用,便于理解文章)TPS参数可用于扭曲人脸模型,以匹配网络估计的真实三维形状,而摄像机投影参数可用于从二维图像纹理三维坐标。此外,面部的姿态可以通过相机参数来确定,从而为3D模型生成可视化地图。这允许我们只使用图像中可见的纹理顶点,而不是被脸部本身遮挡的顶点。
Camera Projection Transformers
简而言之即是:由众所周知的摄像机投影方程表示的三维点映射到摄像机坐标的建模;数学公式表示如下:pc是相机中2d坐标点,pw是世界坐标系中3d点。M是3 X 4的相机投射矩阵。
在这里插入图片描述
文章中的对每一个坐标点求梯度(求导)的公式较易理解,这里不在多叙述了,大家应该很容易就看明白了。
3D Thin Plate Spline Transformers
TPS参数将从深度网络中估计出来并作为输入传递给三维网格生成器模块。
一个点(x,y,z)中仅x坐标位置的3D TPS函数表示如下(y,z处同理):
在这里插入图片描述
经过此函数以后会输出一个新的3D点。
Warped Camera Projection Transformers
TPS之后(上一步骤)的新3d点作为输入传进这一模块,再对这些新的3D点进行相机投射修正其相应的2d点。(对3D点反传求导)。
2D Landmark Regression
为了进一步提高标记点精度,通过标记点细化阶段来扩展网络。此阶段将来自前阶段的投影2D坐标视为初始点,并估采用另一回归模块来计算每个点的偏移量,得到其相应的点坐标。
3D Model Regression From 2D Landmarks
由于上一步骤之后2点坐标发生变化,即原先的3D模型与2d肯定不会相互对应了,为保持3d-2d之间的对应关系,对原3d model进行wrap得到新的3D点与回归后的2d点进行对齐。在这里插入图片描述
在这里插入图片描述
好了,以上知识点了解以后,接下来便进入最重要的网络环节了


Network


在这里插入图片描述
1.首先看最上面即第一层,输入一张图片,经过基础卷积之后(蓝色块之前)进如了TPS网络估计TPS参数,利用估计出来的TPS参数,对generic 3Dmodel(可理解为3DMM中的平均model)按照指定的参数进行扭曲。并输入下一层网络(2Dgrid generator module.);
2.下一层网络(2Dgrid generator module.)
在蓝色块之后采用Camera Projection 网络估计出相机参数,对上一层输入进来的投射,获取2d关键点,并当作初始化的点;
3.第三层网络在蓝色快之后又加了两层33和11的卷积对初始化的2d点(需要把上一层中的2D点输进来)进行feature map 采样,采用双线性插值法得到其偏移量δ x and δ y。进而将求得的偏移量与原来2d坐标值的进行相加得到其新的回归后的2d坐标;
ps:本人3D新人一枚,以上内容仅代表个人对文章的理解,如有不当之处还恳请各位指出。

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: Faster R-CNN是一种基于区域建议网络(Region Proposal Networks,RPN)的物体检测算法,旨在实现实时物体检测。它通过预测每个区域是否含有物体来生成候选框,并使用卷积神经网络(CNN)来确定候选框中的物体类别。Faster R-CNN在提高检测精度的同时,也显著提高了检测速度。 ### 回答2: 在计算机视觉领域中,目标检测一直是热门研究的方向之一。近年来,基于深度学习的目标检测方法已经取得了显著的进展,并且在许多实际应用中得到了广泛的应用。其中,Faster R-CNN 是一种基于区域建议网络(Region Proposal Networks,RPN)的目标检测方法,在检测准确率和速度之间取得了很好的平衡,能够实现实时目标检测。 Faster R-CNN 的基本框架由两个模块组成:区域建议网络(RPN)和检测模块。RPN 主要负责生成候选目标框,而检测模块则利用这些候选框完成目标检测任务。具体来说,RPN 首先在原始图像上以多个尺度的滑动窗口为基础,使用卷积网络获取特征图。然后,在特征图上应用一个小型网络来预测每个位置是否存在目标,以及每个位置的目标边界框的坐标偏移量。最终,RPN 根据预测得分和位置偏移量来选择一部分具有潜在对象的区域,然后将这些区域作为候选框送入检测模块。 检测模块的主要任务是使用候选框来检测图像中的目标类别和位置。具体来说,该模块首先通过将每个候选框映射回原始图像并使用 RoI Pooling 算法来获取固定大小的特征向量。然后,使用全连接神经网络对这些特征向量进行分类和回归,以获得每个框的目标类别和精确位置。 相比于传统的目标检测方法,Faster R-CNN 具有以下优点:首先,通过使用 RPN 可以自动生成候选框,避免了手动设计和选择的过程;其次,通过共享卷积网络可以大大减少计算量,提高效率;最后,Faster R-CNN 在准确率和速度之间取得了很好的平衡,可以实现实时目标检测。 总之,Faster R-CNN 是一种高效、准确的目标检测方法,是深度学习计算机视觉领域中的重要应用之一。在未来,随着计算机视觉技术的进一步发展,Faster R-CNN 这类基于深度学习的目标检测方法将会得到更广泛的应用。 ### 回答3: Faster R-CNN是一种结合了深度学习和传统目标检测算法的新型目标检测方法,旨在提高目标检测速度和准确率。Faster R-CNN采用了Region Proposal Network(RPN)来生成候选区域,并通过R-CNN网络对候选区域进行分类和定位。 RPN是一种全卷积神经网络,用于在图像中生成潜在的候选区域。RPN通常在卷积特征图上滑动,对每个位置预测k个候选区域和其对应的置信度得分。这样,对于输入图像,在不同大小和宽高比的Anchor上预测候选框,可以在计算上更有效率。 R-CNN网络利用卷积特征图作为输入,对RPN生成的候选区域进行分类和精确定位。与以前的目标检测方法相比,Faster R-CNN使用了共享卷积特征,使得整个检测网络可以端到端地进行训练和优化,缩短了训练时间,同时也更便于理解和改进。 Faster R-CNN不仅具有较高的准确性,还具有较快的检测速度。在各种基准测试中,Faster R-CNN与其他目标检测算法相比,都取得了优异的性能表现。总之,Faster R-CNN将目标检测引入了一个新的阶段,为实时目标检测提供了一个良好的基础。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值