RandLA-Net: Efficient Semantic Segmentation of Large-Scale Point Clouds 论文阅读笔记
目录
一、 论文部分:
整体结构简单说就是:
RandLaNet= ⑴ random sampling + ⑵ local feature aggregator
第⑴部分,为了高效的对大的点云进行采样
第⑵部分,因为random sampling 会丢失一些点,以此做为增强
⑵ Local feature aggregator = ① local spatial encoding (LocSE) + ② attentive pooling + ③ dilated residual block
①有效的收集局部几何模式,因此增强整个网络有效的学习复杂的局部结构(编码),分为三步:finding neighbouring points; relative point position encoding; point feature augmentation。
②用来增强点p附近点的特征(聚集),分为两步:computing attention scores; weighted summation。
③大点云下采样,所以用来增强每一个点的感受野。这样输入的点云的几何细节可以观察到。
网络示意图: