RandLA-Net: Efficient Semantic Segmentation of Large-Scale Point Clouds阅读笔记

RandLA-Net是一种用于大规模点云语义分割的网络,通过随机采样和局部特征聚合模块处理高效率的点云数据。局部特征聚合包括局部空间编码、注意力池化和空洞残差块,分别用于捕捉局部几何模式、增强点特征和扩大感受野。代码实现中,这些模块被详细地用TensorFlow实现,包括寻找邻居点、相对位置编码和注意力分数计算等关键步骤。
摘要由CSDN通过智能技术生成

RandLA-Net: Efficient Semantic Segmentation of Large-Scale Point Clouds 论文阅读笔记

一、 论文部分:

整体结构简单说就是:
RandLaNet= ⑴ random sampling + ⑵ local feature aggregator
第⑴部分,为了高效的对大的点云进行采样
第⑵部分,因为random sampling 会丢失一些点,以此做为增强
⑵ Local feature aggregator = ① local spatial encoding (LocSE) + ② attentive pooling + ③ dilated residual block
①有效的收集局部几何模式,因此增强整个网络有效的学习复杂的局部结构(编码),分为三步:finding neighbouring points; relative point position encoding; point feature augmentation。
②用来增强点p附近点的特征(聚集),分为两步:computing attention scores; weighted summation。
③大点云下采样,所以用来增强每一个点的感受野。这样输入的点云的几何细节可以观察到。

网络示意图:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值