名词
-
支路(b): 若干元件没有分叉彼此相连的整体
-
回路: 闭合路径
-
网孔: 不含支路的闭合回路
-
结点(n): 三条支路或以上的支路的交点
-
端口: 有两个接线端。端口又分为有源一端口和无源一端口
无源一端口: 假设 u(-∞) = 0, i(-∞) = 0(即在很久之前电压电流都为0,没有能量) 当t>0时,∫ t-∞ u(τ) i(τ) dτ ≥ 0(即端口吸收的瞬时功率的积分大于等于0),称该端口为无源一端口,反之为有源一端口。
τ(tau): 为时间常数,用于表示幅值衰减到所需用的时间
端口条件: 一个端口的流入电流 = 另一个端口的流出电流
-
二端口网络: 通过两个端口组成,与外电路相连的网络。
端口条件: 一个端口的流入电流 = 另一个端口的流出电流 (如果在端口之间接上一条新的支路端口条件就有可能被破坏,导致该网络不再是为端口网络)
-
线性系统: 有两个性质①齐次性 ②可加性
单输入单输出线性系统:
表达式:y = ax(a由系统决定)
齐次性:X→KX , Y =KY
可加性: X→X1 +X2 ,Y =Y1 +Y2
双输入单输出线性系统:
表达式:y = ax1+bx2 (a、b由系统决定)
满足:①(对于Y,X2 = 0时)Y’ = ax1
②(对于Y,X1 = 0时)Y’’= bx2
可得:Y=Y’ +Y’’
电路分析方法
支路电流法
支路电流法:以支路电流为变量列写方程
- 方程数目: 独立结点个数 +独立回路个数
独立结点: 选取一个结点为参考点,剩下的就为独立结点
独立回路: 对于平面电路,独立回路数= 网孔数 ;对于非平面电路,每个独立回路必须含一条新的支路 - 支路电流法步骤:
①确定电路中电流的参考方向
②选取参考结点,列写KCL 方程
③根据独立回路,列写KVL方程
④连列方程求解电路
结点电压法
结点电压法:根据静电场的唯一性,可得用结点电压法列方程,自动满足KVL
- 方程数目:独立结点的数目
- 结点电压法步骤:
①选取参考结点,列写KCL
②明确规定 流入结点电流为正,流出结点电流为负 - 以两个独立结点为例,结点电压法方程的标准形式
① G11 Un1 + G12 Un2 = isn1
② G21 Un1 + G22 Un2 = isn2
参数:
isn1、 isn2 流入结点的电流
G11 、G22 结点上的电导之和,称为自电导
G12 、G21 连接两结点之间的电导之和的负数,称为互电导
例:
方程:(1S+1S)Un1 - (1S)Un2 = 5A
- (1S)Un1 +(1S+1S)Un2 = -10A(两个方程求两个未知数可求的结点电压)
-
推广多个结点电路
Gii : 结点上的电导之和
Gij Gji : 结点之间的连接电导,极性为负
isni : 流入结点的电流 -
结点电压法中的特殊情况:
①含电压源和电阻:
将电压源和电阻串联等效成电流源和电阻并联,根据上述方法就可求解。
②含独立电压源支路(现实中遇见最多的情况):
步骤:①选取合适的参考点
②假设电路的总电流为I
③列写结点方程
④添加补充方程:结点电压和独立电压源的关系(注意:有几个独立电压源就补充几条方程)
③含受控源:
含受控源时,将受控源看作独立源
步骤:
①选取合适的参考点
②列写结点方程
③添加补充方程,表示受控源和结点电压的关系(注意:有几个受控源就补充几条方程)
回路电流法
回路电流法:以回路电流为变量列写方程 (实际上回路电流并不存在)
- **方程数量:**独立回路的个数(平面电路的独立回路 = 网孔数量)
- 回路电流法步骤:
①找到电路中的独立回路
②列写KVL方程(ΣU = 0) - 以两个独立回路为例,回路电流法方程的标准形式
① R11 il1 + R12 il2 = usl1
② R21 il1 + R22 il2 = usl2
参数:
usl1 、 usl2 : 沿着回路的所有电压升
R11 、R22: 回路上所有电阻之和,称为自电阻
R12 、R21 不止一个回路电流流过的的电阻之和,称为互电阻
例:
(R1+R2)i1 + R2i2 = us1 -us2
R2i1+(R2+R3)i2 = - us2
-
推广到多个回路的电路
Rii : 回路上所有电阻之和
Gij Gji : 不止一个回路电流流过的的电阻之和。
分三种情况:
①极性为正:回路电流流过互电阻时方向一致。
②极性为负:回路电流流过互电阻时方向不一致。
③值为0:无互电阻
usli : 沿着回路的所有电压升 -
回路电压中的特殊情况:
①电路中含独立电流源
步骤:①找好电路中的独立回路
②假设独立电流源上的电压为Ui
③列写KVL方程
④添加补充方程:回路电流和独立电流源的关系(注意:有几个独立电流源就补充几条方程)
②含受控源的情况:
受控电流源:将该受控源看作独立电流源(解题方法如电路中含独立电流源)
受控电压源:将该受控源看作独立电压源
最后增加受控源和回路电流的关系方程(有几个受控源就增加几条方程)
叠加定理
叠加定理:在线性电路中,任何支路量都是每个独立源单独作用的效果叠加的子电路代数之和(利用了线性系统的可加性)
- 电路中某个独立源单独作用,其他独立源无效时的等效:电压源等效成短路,电流源等效成开路
- 电路中每个独立源单独作用后得到的某点电压之和 = 电路中某点电压的值
- 使用叠加定理时应该注意:
①叠加定理只能求支路量,不可求支路的功率
②受控源不参加叠加 - 补充:线性系统的齐次性应用,假设电路中代求值为一个已知数,根据比例关系,求得代求值
戴维南定理
戴维南定理:对于一个端口网络,里面可能包含很多线性元件(也许组合很复杂),但端口内部一定能等于一个串联的连接。这个串联连接就是:一个独立电压源(该电压等于端口网络的开路电压)和一个电阻(该电阻等于独立源置零后的输入电阻)的的串联。
如何求Uoc、Ri
例:
求Uoc
①通过等效,用欧姆定律求得回路中的电流I
②用KVL求得开路电压Uoc
求Ri
①将电路中的独立源置零(电压源短路,电流源开路)
②求该电路中的等效电阻
- 开路电压:用KVL可求得
- 电阻:将电路中的独立源置零后(电压源短路,电流源开路),该电路的等效电阻
讨论电压信号的Ri、Ro
- 由输入端看进去:(Ri要尽可能大,才可获得较大的电压信号)
Ri: 使Uo开路,用加压求流法/加流求压法求Ri
- 由输出端看进去:(Ro要尽可能小,RL上才可获得较大的电压信号,RL=Ri时功率最大)
Ro : 使Uo短路,用戴维南定理求Ro
- 由此可得:想要一个电压信号经过一个二端网络,无损输出,该二端网络的Ri要尽可能大,Ro要尽可能小
- 电流型信号:则反之,二端网络的Ri要尽可能小,Ro要尽可能大
回顾平衡电桥
用戴维南可以证明:当等电位点接任意阻值时,不影响其他支路
使DB两端开路,根据用戴维南定理,可化简得以下电路:
又因为电桥达到平衡,UBD = 0 → Uoc = 0,所以以下电路接任意值支路上都没有电流。