电路回顾(二)

名词

  • 支路(b): 若干元件没有分叉彼此相连的整体

  • 回路: 闭合路径

  • 网孔: 不含支路的闭合回路

  • 结点(n): 三条支路或以上的支路的交点

  • 端口: 有两个接线端。端口又分为有源一端口和无源一端口
    无源一端口: 假设 u(-∞) = 0, i(-∞) = 0(即在很久之前电压电流都为0,没有能量) 当t>0时,∫ t-∞ u(τ) i(τ) dτ ≥ 0(即端口吸收的瞬时功率的积分大于等于0),称该端口为无源一端口,反之为有源一端口。
    τ(tau): 为时间常数,用于表示幅值衰减到所需用的时间
    端口条件: 一个端口的流入电流 = 另一个端口的流出电流
    在这里插入图片描述

  • 二端口网络: 通过两个端口组成,与外电路相连的网络。
    端口条件: 一个端口的流入电流 = 另一个端口的流出电流 (如果在端口之间接上一条新的支路端口条件就有可能被破坏,导致该网络不再是为端口网络)
    在这里插入图片描述

  • 线性系统: 有两个性质①齐次性 ②可加性
    单输入单输出线性系统:
    在这里插入图片描述
    表达式:y = ax(a由系统决定)
    齐次性:X→KX , Y =KY
    可加性: X→X1 +X2 ,Y =Y1 +Y2

双输入单输出线性系统:
在这里插入图片描述
表达式:y = ax1+bx2 (a、b由系统决定)
满足:①(对于Y,X2 = 0时)Y’ = ax1
           ②(对于Y,X1 = 0时)Y’’= bx2
           可得:Y=Y’ +Y’’

电路分析方法

支路电流法

支路电流法:以支路电流为变量列写方程

  • 方程数目: 独立结点个数 +独立回路个数
    独立结点: 选取一个结点为参考点,剩下的就为独立结点
    独立回路: 对于平面电路,独立回路数= 网孔数 ;对于非平面电路,每个独立回路必须含一条新的支路
  • 支路电流法步骤
    ①确定电路中电流的参考方向
    ②选取参考结点,列写KCL 方程
    ③根据独立回路,列写KVL方程
    ④连列方程求解电路
结点电压法

结点电压法:根据静电场的唯一性,可得用结点电压法列方程,自动满足KVL

  • 方程数目:独立结点的数目
  • 结点电压法步骤:
    ①选取参考结点,列写KCL
    ②明确规定 流入结点电流为正,流出结点电流为负
  • 以两个独立结点为例,结点电压法方程的标准形式
    ① G11 Un1 + G12 Un2 = isn1
    ② G21 Un1 + G22 Un2 = isn2
    参数:
    isn1、 isn2 流入结点的电流
    G11 、G22 结点上的电导之和,称为自电导
    G12 、G21 连接两结点之间的电导之和的负数,称为互电导

例:
在这里插入图片描述
方程:(1S+1S)Un1 - (1S)Un2 = 5A
          - (1S)Un1 +(1S+1S)Un2 = -10A(两个方程求两个未知数可求的结点电压)

  • 推广多个结点电路
    Gii : 结点上的电导之和
    Gij Gji : 结点之间的连接电导,极性为负
    isni : 流入结点的电流

  • 结点电压法中的特殊情况:
    ①含电压源和电阻:
    在这里插入图片描述
    将电压源和电阻串联等效成电流源和电阻并联,根据上述方法就可求解。
    在这里插入图片描述

②含独立电压源支路(现实中遇见最多的情况):
在这里插入图片描述
步骤:①选取合适的参考点
           ②假设电路的总电流为I
           ③列写结点方程
           ④添加补充方程:结点电压和独立电压源的关系(注意:有几个独立电压源就补充几条方程)

③含受控源:
在这里插入图片描述
含受控源时,将受控源看作独立源
步骤:
①选取合适的参考点
②列写结点方程
③添加补充方程,表示受控源和结点电压的关系(注意:有几个受控源就补充几条方程)

回路电流法

回路电流法:以回路电流为变量列写方程 (实际上回路电流并不存在)

  • **方程数量:**独立回路的个数(平面电路的独立回路 = 网孔数量)
  • 回路电流法步骤:
    ①找到电路中的独立回路
    ②列写KVL方程(ΣU = 0)
  • 以两个独立回路为例,回路电流法方程的标准形式
    ① R11 il1 + R12 il2 = usl1
    ② R21 il1 + R22 il2 = usl2
    参数:
    usl1 、 usl2 : 沿着回路的所有电压升
    R11 、R22: 回路上所有电阻之和,称为自电阻
    R12 、R21 不止一个回路电流流过的的电阻之和,称为互电阻

例:
在这里插入图片描述
(R1+R2)i1 + R2i2 = us1 -us2
R2i1+(R2+R3)i2 = - us2

  • 推广到多个回路的电路
    Rii : 回路上所有电阻之和
    Gij Gji : 不止一个回路电流流过的的电阻之和。
    分三种情况:
    ①极性为正:回路电流流过互电阻时方向一致。
    ②极性为负:回路电流流过互电阻时方向不一致。
    ③值为0:无互电阻
    usli : 沿着回路的所有电压升

  • 回路电压中的特殊情况:
    ①电路中含独立电流源

在这里插入图片描述
步骤:①找好电路中的独立回路
           ②假设独立电流源上的电压为Ui
           ③列写KVL方程
           ④添加补充方程:回路电流和独立电流源的关系(注意:有几个独立电流源就补充几条方程)

②含受控源的情况:
在这里插入图片描述
受控电流源:将该受控源看作独立电流源(解题方法如电路中含独立电流源)
受控电压源:将该受控源看作独立电压源
最后增加受控源和回路电流的关系方程(有几个受控源就增加几条方程)

叠加定理

叠加定理:在线性电路中,任何支路量都是每个独立源单独作用的效果叠加的子电路代数之和(利用了线性系统的可加性)

  • 电路中某个独立源单独作用,其他独立源无效时的等效:电压源等效成短路,电流源等效成开路
  • 电路中每个独立源单独作用后得到的某点电压之和 = 电路中某点电压的值
  • 使用叠加定理时应该注意:
    ①叠加定理只能求支路量,不可求支路的功率
    ②受控源不参加叠加
  • 补充:线性系统的齐次性应用,假设电路中代求值为一个已知数,根据比例关系,求得代求值
戴维南定理

戴维南定理:对于一个端口网络,里面可能包含很多线性元件(也许组合很复杂),但端口内部一定能等于一个串联的连接。这个串联连接就是:一个独立电压源(该电压等于端口网络的开路电压)和一个电阻(该电阻等于独立源置零后的输入电阻)的的串联。

如何求Uoc、Ri

例:
求Uoc
①通过等效,用欧姆定律求得回路中的电流I
②用KVL求得开路电压Uoc
在这里插入图片描述
求Ri
①将电路中的独立源置零(电压源短路,电流源开路)
②求该电路中的等效电阻
在这里插入图片描述

  • 开路电压:用KVL可求得
  • 电阻:将电路中的独立源置零后(电压源短路,电流源开路),该电路的等效电阻
讨论电压信号的Ri、Ro

在这里插入图片描述

  • 由输入端看进去:(Ri要尽可能大,才可获得较大的电压信号)
    Ri 使Uo开路,用加压求流法/加流求压法求Ri
    在这里插入图片描述
  • 由输出端看进去:(Ro要尽可能小,RL上才可获得较大的电压信号,RL=Ri时功率最大)
    Ro 使Uo短路,用戴维南定理求Ro

在这里插入图片描述

  • 由此可得:想要一个电压信号经过一个二端网络,无损输出,该二端网络的Ri要尽可能大,Ro要尽可能小
  • 电流型信号:则反之,二端网络的Ri要尽可能小,Ro要尽可能大
回顾平衡电桥

用戴维南可以证明:当等电位点接任意阻值时,不影响其他支路
在这里插入图片描述
使DB两端开路,根据用戴维南定理,可化简得以下电路:
在这里插入图片描述
又因为电桥达到平衡,UBD = 0   → Uoc = 0,所以以下电路接任意值支路上都没有电流。
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值