目录
1.电压源的等效变换
多个理想电压源串联,可以用一个等效电压源来代替,等效电压源的电压等于各电压源电压的代数和。
当理想电压源的电压相等且极性一致时才能并联,且可用其中任何一个电压源作为其等效电路。
根据独立源的应用性质,理想电压源与任何元件的并联对外可等效为该电压源,如图1所示。
图1 电压源与任意元件的并联
2.电流源的等效变换
多个理想电流源并联,可以用一个等效电流源来代替,等效电流源的电流等于各电流源电流的代数和。
当理想电流源的电流相等且电流方向一致时才能串联,并可用其中任何一个电流源作为其等效电路。
根据独立源的应用性质,理想电流源与任何元件的串联对外可等效为该电流源,如图2所示。
图2 电流源与任意元件的串联
3.实际电源的两种电路模型及其等效变换
⑴实际电源的两种电路模型:
实际电源的两种电路模型分别为理想电压源与电阻的串联组合和理想电流源与电阻的并联组合,它们可分别称为戴维宁电路和诺顿电路,如图3(a)和3(b)所示。
图3 实际电源的两种模型
⑵两种模型之间的等效变换
实际电源的两种模型的等效变换,应使二者具有相同的外特性(VCR),如图3中(a)和(b)相互等效,则有
4.受控源组合电路的等效变换
受控电压源与电阻的串联组合和受控电流源与电阻的并联组合可采用实际电源两种模型的等效变换方法进行变换,把受控源当作独立源处理,且在变换的过程中控制量必须保持完整而不被改变。
题1求图4所示电路的电流i。
图4
解析:将串联的电压源支路变换为等效电流源,并联的电流源支流变换为等效电压源,如图5所示。并联的各电流源合并为一个电流源后再变换为电压源,如图6所示,两个电压源串联后得最终的等效电路。
图5
图6
5.无源一端口(二端网络)的输入电阻
无源一端口(也称单口网络或二端网络)的输入电阻定义为该端口的端电压与端电流之比,如图7所示,。
图7 无源一端口网络的输入电阻
无源一端口网络的输入电阻和其等效电阻的数值是相等的,可通过求等效电阻得到输入电阻的值。求解和计算方法可归纳为:
⑴对纯电阻网络,通过电阻的串并联或Y-∆等效变换方法求解。
⑵当无源一端口网络含有受控源时,需要采用外加电源法。
对含有独立源的一端口网络,可采用外加电源法、开路-短路法或直接求VAR法,本质上是求其等效电路(戴维宁等效或诺顿等效)的内阻。
题2试求图8所示电路的端口等效电阻。
图8
解析:对原电路虚线所示部分进行Δ-Y变换,得图9所示电路,并进一步等效(简化)为如图10所示,设外加电压为U,端口电流为I,则由KCL和KVL
图9
图10
题3求图11所示电路的输入电阻。
图11
解析:设ab端外加电压u,由KVL,可得
解得
综合题★★★★
题4电路如图12所示,若,
,则
图12
解析:将原电路左侧三条支路做电源等效,虚线所示部分做Y-∆变换,得图13所示电路,并进一步简化为图14。则
图13
图14
解得。
题5已知含独立源单口电路端口上的关系曲线如图15所示,求此含独立源单口电路的端口等效电压源电路与等效电流源电路。
图15
解析:依关系曲线可知,
。
故该含源单口电路的端口等效电压源电路与等效电流源电路分别如图16(a)和16(b)所示。
图16
题6试求图17所示无源一端口网络的输入电阻。
图17
解析:将原电路从虚线处断开,如图18所示,采用附加电源法求虚线右侧二端网络的输入电阻,此处附加电源为电压源,则
所以
图18
图19
则原电路可简化为图19所示,因虚线所示部分为平衡电桥,易求得