后端开发面经系列 -- 小米澎湃OS - C++开发二面

小米澎湃OS - C++开发二面

公众号:阿Q技术站

来源:https://www.nowcoder.com/discuss/610414092750237696

1、linux常用命令举例?

这里小伙伴也给了建议不要举什么cd的,可以说稍微有技术含量的,比如tail 用来查日志,cat 用来查看小文件,ps 用来查看进程,pwd 查看当前目录,grep用来过滤,top 用来查看 cpu 的使用率,chomd 用来修改权限,ash 用来远程登陆。

2、进程,线程区别?

  1. 定义:
    • 进程:是程序的一次执行过程,是操作系统进行资源分配和调度的一个独立单位。
    • 线程:是进程的一个执行单元,是操作系统进行调度的最小单位,它可以与同属一个进程的其他线程共享进程所拥有的全部资源。
  2. 资源拥有:
    • 进程:拥有独立的地址空间、文件描述符、堆栈和数据段等资源。
    • 线程:共享所属进程的地址空间和其他资源,如文件描述符、堆栈、数据段等。
  3. 通信和同步:
    • 进程:进程间通信(IPC)比较复杂,需要借助于操作系统提供的机制,如管道、信号量、消息队列等。
    • 线程:线程间通信(IPC)较为简单,可以直接通过共享内存等方式进行通信。
  4. 创建和销毁开销:
    • 进程:创建和销毁较为复杂,需要分配和回收大量资源。
    • 线程:创建和销毁较为简单,开销较小。
  5. 并发性:
    • 进程:进程之间相互独立,因此可以并发执行。
    • 线程:同一进程内的多个线程共享进程的资源,可以实现并发执行。

3、进程间通信方式?

  1. 管道:
    • 单向通信,分为匿名管道和命名管道。
    • 匿名管道只能用于具有亲缘关系的进程间通信,一般在创建子进程时使用。
    • 命名管道可以用于无亲缘关系的进程间通信,通过文件系统中的特殊文件实现。
  2. 信号:
    • 用于通知进程发生了某种事件。
    • 可以用于进程间的简单通信,但只能传递少量信息。
  3. 消息队列:
    • 允许一个进程向另一个进程发送消息的队列。
    • 消息队列独立于发送和接收进程,可以提供异步通信的能力。
  4. 共享内存:
    • 允许多个进程共享同一段内存空间。
    • 由于是直接访问内存,所以速度快,但需要考虑同步和互斥问题。
  5. 信号量:
    • 用于进程间同步和互斥的一种机制。
    • 可以用来解决进程对共享资源的争用问题,保证多个进程之间的同步。
  6. 套接字:
    • 在网络编程中用于不同主机间的进程通信,也可以用于同一主机内的进程间通信。
    • 提供了一种统一的通信接口,可以实现进程间的数据交换。
  7. 文件锁:
    • 使用文件系统的锁机制来实现进程间的同步。
    • 可以通过对文件进行加锁和解锁来控制进程对文件的访问。

4、源文件到可执行文件的过程?

  1. 预处理:
    • 预处理器(如C预处理器)会处理源文件,执行诸如包含头文件、宏展开、条件编译等操作,生成经过预处理的中间文件。
  2. 编译:
    • 编译器(如GCC、Clang等)将预处理后的文件转换为汇编代码(Assembly Code),汇编代码是一种低级的表示,使用特定的汇编语言描述源代码的操作和数据。
  3. 汇编:
    • 汇编器(Assembler)将汇编代码转换为机器码(Machine Code),即二进制指令,这些指令可以被计算机硬件直接执行。
  4. 链接:
    • 链接器(Linker)将编译后的目标文件与所需的库文件链接在一起,生成最终的可执行文件。
    • 链接器会解析符号引用(Symbol References),将源文件中引用的函数或变量与其定义所在的位置进行关联,最终生成一个完整的可执行文件。
  5. 装载(可选):
    • 如果生成的可执行文件需要在运行时动态加载库文件,操作系统的加载器会负责将这些库文件加载到内存中。
  6. 运行:
    • 最终生成的可执行文件被操作系统加载到内存中,并由CPU执行,实现了源文件的功能。

5、linux内存空间分布(这个应该是要区分一下c++内存分布ÿ

### LlamaIndex 多模态 RAG 实现 LlamaIndex 支持多种数据类型的接入与处理,这使得它成为构建多模态检索增强生成(RAG)系统的理想选择[^1]。为了实现这一目标,LlamaIndex 结合了不同种类的数据连接器、索引机制以及强大的查询引擎。 #### 数据连接器支持多样化输入源 对于多模态数据的支持始于数据收集阶段。LlamaIndex 的数据连接器可以从多个异构资源中提取信息,包括但不限于APIs、PDF文档、SQL数据库等。这意味着无论是文本还是多媒体文件中的内容都可以被纳入到后续的分析流程之中。 #### 统一化的中间表示形式 一旦获取到了原始资料之后,下一步就是创建统一而高效的内部表达方式——即所谓的“中间表示”。这种转换不仅简化了下游任务的操作难度,同时也提高了整个系统的性能表现。尤其当面对复杂场景下的混合型数据集时,良好的设计尤为关键。 #### 查询引擎助力跨媒体理解能力 借助于内置的强大搜索引擎组件,用户可以通过自然语言提问的形式轻松获得所需答案;而对于更复杂的交互需求,则提供了专门定制版聊天机器人服务作为补充选项之一。更重要的是,在这里实现了真正的语义级关联匹配逻辑,从而让计算机具备了一定程度上的‘认知’功能去理解和回应人类意图背后所蕴含的意义所在。 #### 应用实例展示 考虑到实际应用场景的需求多样性,下面给出一段Python代码示例来说明如何利用LlamaIndex搭建一个多模态RAG系统: ```python from llama_index import GPTSimpleVectorIndex, SimpleDirectoryReader, LLMPredictor, PromptHelper, ServiceContext from langchain.llms.base import BaseLLM import os def create_multi_modal_rag_system(): documents = SimpleDirectoryReader(input_dir='./data').load_data() llm_predictor = LLMPredictor(llm=BaseLLM()) # 假设已经定义好了具体的大型预训练模型 service_context = ServiceContext.from_defaults( chunk_size_limit=None, prompt_helper=PromptHelper(max_input_size=-1), llm_predictor=llm_predictor ) index = GPTSimpleVectorIndex(documents, service_context=service_context) query_engine = index.as_query_engine(similarity_top_k=2) response = query_engine.query("请描述一下图片里的人物表情特征") print(response) ``` 此段脚本展示了从加载本地目录下各类格式文件开始直到最终完成一次基于相似度排序后的top-k条目返回全过程。值得注意的是,“query”方法接收字符串参数代表使用者想要询问的内容,而在后台则会自动调用相应的解析模块并结合先前准备好的知识库来进行推理计算得出结论。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值