学习笔记:机器学习之朴素贝叶斯法

0 引入

       朴素贝叶斯法是基于贝叶斯定理和特征条件独立假设的分类方法。

                                                                                                 ————《统计学习方法》

         根据书上给出的定义不难看出该算法与贝叶斯定理有直接联系,贝叶斯定理是求后验概率的一种方法,这样我们对于给定的x,基于该种方法可以计算出后验概率最大的输出y,所以这也可以是一种分类方法。

Why naive?

        这里的朴素是说该方法对条件概率作了条件独立性的假设,所以是naive Bayes。即

   

1 分类算法

 为什么将后验概率最大值的类别作为输出结果?

        与之前学的感知机、k近邻算法类似我们需要一个损失函数得值去度量此时的参数是否最优,贝叶斯算法同样如此:

 2 两种参数估计方式

2.1 极大似然估计

  1. 求出似然函数
  2. 算出使得似然函数最大时的参数(取对数,直接算)
  3. 求得参数

这两个先验概率可通过该方法计算出来,设所求先验概率P=\Theta,再经过以上3步进行求解,即可得到。

2.2 贝叶斯估计

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值