定理:迭代式两阶段估计的渐近正态性证明
模型与符号约定
考虑地理加权部分线性分位数回归模型:
Q
τ
(
Y
∣
X
,
Z
,
U
)
=
X
⊤
β
+
Z
⊤
α
(
U
)
,
Q_{\tau}(Y | X, Z, U) = X^\top \beta + Z^\top \alpha(U),
Qτ(Y∣X,Z,U)=X⊤β+Z⊤α(U),
其中:
- U = ( u 1 , u 2 , u 3 , u 4 ) U = (u_1, u_2, u_3, u_4) U=(u1,u2,u3,u4) 为四维位置变量(经度、纬度、高度、时间),
- α ( U ) \alpha(U) α(U) 通过局部线性分位数回归估计,
- β \beta β 通过迭代式两阶段估计:交替更新非参数部分 α ( U ) \alpha(U) α(U) 和参数部分 β \beta β,直至收敛。
定义误差项:
ϵ
=
Y
−
X
⊤
β
−
Z
⊤
α
(
U
)
,
P
(
ϵ
≤
0
∣
X
,
Z
,
U
)
=
τ
.
\epsilon = Y - X^\top \beta - Z^\top \alpha(U), \quad P(\epsilon \leq 0 | X, Z, U) = \tau.
ϵ=Y−X⊤β−Z⊤α(U),P(ϵ≤0∣X,Z,U)=τ.
假设条件
-
非参数光滑性
α ( U ) ∈ C 2 ( D ) \alpha(U) \in C^2(\mathcal{D}) α(U)∈C2(D),且其二阶导数满足 ∥ ∂ 2 α ( U ) / ∂ U ∂ U ⊤ ∥ ≤ C \| \partial^2 \alpha(U)/\partial U \partial U^\top \| \leq C ∥∂2α(U)/∂U∂U⊤∥≤C。 -
设计正则性
- E [ X X ⊤ ] E[XX^\top] E[XX⊤] 正定,且协变量 X X X 与 Z , U Z, U Z,U 满足正交性条件: E [ X ∣ Z , U ] = E [ X ] E[X | Z, U] = E[X] E[X∣Z,U]=E[X]。
- 四维位置变量 U U U 的联合密度 f ( U ) f(U) f(U) 在其支撑集上满足 0 < c 1 ≤ f ( U ) ≤ c 2 < ∞ 0 < c_1 \leq f(U) \leq c_2 < \infty 0<c1≤f(U)≤c2<∞。
-
误差条件密度
- 在 ϵ = 0 \epsilon = 0 ϵ=0 处,条件密度 f ϵ ∣ X , Z , U ( 0 ) ≥ c > 0 f_{\epsilon | X, Z, U}(0) \geq c > 0 fϵ∣X,Z,U(0)≥c>0。
- f ϵ ∣ X , Z , U ( 0 ) f_{\epsilon | X, Z, U}(0) fϵ∣X,Z,U(0) 关于 ( X , Z , U ) (X, Z, U) (X,Z,U) 一致连续。
-
核函数与带宽
- 使用乘积核函数 K h ( U ) = ∏ d = 1 4 1 h d K ( u d h d ) K_h(U) = \prod_{d=1}^4 \frac{1}{h_d} K\left( \frac{u_d}{h_d} \right) Kh(U)=∏d=14hd1K(hdud),其中 K ( ⋅ ) K(\cdot) K(⋅) 对称、紧支撑且满足 ∫ K ( u ) d u = 1 \int K(u) du = 1 ∫K(u)du=1, ∫ u K ( u ) d u = 0 \int u K(u) du = 0 ∫uK(u)du=0。
- 带宽选择满足 h d = o ( 1 ) h_d = o(1) hd=o(1) 且 n ∏ d = 1 4 h d → ∞ n \prod_{d=1}^4 h_d \to \infty n∏d=14hd→∞。
-
迭代收敛性
迭代序列 { β ^ ( m ) , α ^ ( m ) ( U ) } \{ \hat{\beta}^{(m)}, \hat{\alpha}^{(m)}(U) \} {β^(m),α^(m)(U)} 依概率收敛到真值 ( β , α ( U ) ) (\beta, \alpha(U)) (β,α(U)),且存在常数 C C C,使得:
∥ β ^ ( m ) − β ∥ ≤ C ( ∥ β ^ ( m − 1 ) − β ∥ + sup U ∥ α ^ ( m − 1 ) ( U ) − α ( U ) ∥ ) . \| \hat{\beta}^{(m)} - \beta \| \leq C \left( \| \hat{\beta}^{(m-1)} - \beta \| + \sup_{U} \| \hat{\alpha}^{(m-1)}(U) - \alpha(U) \| \right). ∥β^(m)−β∥≤C(∥β^(m−1)−β∥+Usup∥α^(m−1)(U)−α(U)∥).
证明过程
步骤1:非参数估计的偏差-方差分解
固定 β \beta β,通过局部线性分位数回归估计 α ( U ) \alpha(U) α(U)。在位置 U 0 U_0 U0 处,展开 α ( U ) \alpha(U) α(U) 为:
α
(
U
)
≈
α
(
U
0
)
+
D
α
(
U
0
)
⊤
(
U
−
U
0
)
,
\begin{equation*} \alpha(U) \approx \alpha(U_0) + D_\alpha(U_0)^\top (U - U_0), \end{equation*}
α(U)≈α(U0)+Dα(U0)⊤(U−U0),
其中
D
α
(
U
0
)
D_\alpha(U_0)
Dα(U0) 为梯度矩阵。定义损失函数:
L
n
(
α
(
U
0
)
,
D
α
(
U
0
)
)
=
∑
i
=
1
n
ρ
τ
(
Y
i
−
X
i
⊤
β
−
Z
i
⊤
[
α
(
U
0
)
+
D
α
(
U
0
)
⊤
(
U
i
−
U
0
)
]
)
K
h
(
U
i
−
U
0
)
.
L_n(\alpha(U_0), D_\alpha(U_0)) = \sum_{i=1}^n \rho_\tau \left( Y_i - X_i^\top \beta - Z_i^\top \left[ \alpha(U_0) + D_\alpha(U_0)^\top (U_i - U_0) \right] \right) K_h(U_i - U_0).
Ln(α(U0),Dα(U0))=i=1∑nρτ(Yi−Xi⊤β−Zi⊤[α(U0)+Dα(U0)⊤(Ui−U0)])Kh(Ui−U0).
通过分位数回归理论(Koenker, 2005),在四维情况下,局部线性估计量
α
^
(
U
0
)
\hat{\alpha}(U_0)
α^(U0) 的偏差和方差分别为:
Bias
(
α
^
(
U
0
)
)
=
O
(
∑
d
=
1
4
h
d
2
)
,
Var
(
α
^
(
U
0
)
)
=
O
(
1
n
∏
d
=
1
4
h
d
)
.
\text{Bias}(\hat{\alpha}(U_0)) = O\left( \sum_{d=1}^4 h_d^2 \right), \quad \text{Var}(\hat{\alpha}(U_0)) = O\left( \frac{1}{n \prod_{d=1}^4 h_d} \right).
Bias(α^(U0))=O(d=1∑4hd2),Var(α^(U0))=O(n∏d=14hd1).
选择带宽
h
d
∝
n
−
1
/
(
4
+
4
)
=
n
−
1
/
8
h_d \propto n^{-1/(4 + 4)} = n^{-1/8}
hd∝n−1/(4+4)=n−1/8,则:
sup
U
∥
α
^
(
U
)
−
α
(
U
)
∥
=
O
p
(
n
−
2
/
8
+
1
n
⋅
n
−
4
/
8
)
=
O
p
(
n
−
1
/
4
)
.
\sup_{U} \| \hat{\alpha}(U) - \alpha(U) \| = O_p\left( n^{-2/8} + \sqrt{ \frac{1}{n \cdot n^{-4/8}} } \right) = O_p(n^{-1/4}).
Usup∥α^(U)−α(U)∥=Op(n−2/8+n⋅n−4/81)=Op(n−1/4).
步骤2:参数估计的迭代误差分析与高阶余项处理
假设在第
m
m
m 次迭代中,非参数估计误差为
Δ
(
m
)
(
U
)
=
α
^
(
m
)
(
U
)
−
α
(
U
)
\Delta^{(m)}(U) = \hat{\alpha}^{(m)}(U) - \alpha(U)
Δ(m)(U)=α^(m)(U)−α(U),参数估计误差为
δ
(
m
)
=
β
^
(
m
)
−
β
\delta^{(m)} = \hat{\beta}^{(m)} - \beta
δ(m)=β^(m)−β。根据模型结构:
Y
i
−
X
i
⊤
β
^
(
m
)
−
Z
i
⊤
α
^
(
m
)
(
U
i
)
=
ϵ
i
−
X
i
⊤
δ
(
m
)
−
Z
i
⊤
Δ
(
m
)
(
U
i
)
.
Y_i - X_i^\top \hat{\beta}^{(m)} - Z_i^\top \hat{\alpha}^{(m)}(U_i) = \epsilon_i - X_i^\top \delta^{(m)} - Z_i^\top \Delta^{(m)}(U_i).
Yi−Xi⊤β^(m)−Zi⊤α^(m)(Ui)=ϵi−Xi⊤δ(m)−Zi⊤Δ(m)(Ui).
在阶段二中,固定
α
^
(
m
)
(
U
)
\hat{\alpha}^{(m)}(U)
α^(m)(U),通过分位数回归估计
β
\beta
β:
β
^
(
m
+
1
)
=
arg
min
β
∑
i
=
1
n
ρ
τ
(
Y
i
−
X
i
⊤
β
−
Z
i
⊤
α
^
(
m
)
(
U
i
)
)
.
\hat{\beta}^{(m+1)} = \arg\min_{\beta} \sum_{i=1}^n \rho_\tau \left( Y_i - X_i^\top \beta - Z_i^\top \hat{\alpha}^{(m)}(U_i) \right).
β^(m+1)=argβmini=1∑nρτ(Yi−Xi⊤β−Zi⊤α^(m)(Ui)).
定义
r
i
=
X
i
⊤
δ
(
m
)
+
Z
i
⊤
Δ
(
m
)
(
U
i
)
r_i = X_i^\top \delta^{(m)} + Z_i^\top \Delta^{(m)}(U_i)
ri=Xi⊤δ(m)+Zi⊤Δ(m)(Ui),将分位数得分函数展开。由于分位数回归中目标函数为分段线性,直接泰勒展开不可行,需采用Bahadur表示处理不可导性:
ψ
τ
(
ϵ
i
−
r
i
)
=
ψ
τ
(
ϵ
i
)
−
f
ϵ
(
0
)
r
i
+
Δ
i
,
\psi_\tau(\epsilon_i - r_i) = \psi_\tau(\epsilon_i) - f_{\epsilon}(0) r_i + \Delta_i,
ψτ(ϵi−ri)=ψτ(ϵi)−fϵ(0)ri+Δi,
其中
ψ
τ
(
r
)
=
τ
−
I
(
r
<
0
)
\psi_\tau(r) = \tau - I(r < 0)
ψτ(r)=τ−I(r<0),
Δ
i
\Delta_i
Δi 为高阶剩余项。
利用 Kiefer (1967) 的结论,对分位数过程的一致展开可得:
Δ
i
=
ψ
τ
(
ϵ
i
−
r
i
)
−
ψ
τ
(
ϵ
i
)
+
f
ϵ
(
0
)
r
i
=
O
p
(
r
i
2
)
.
\Delta_i = \psi_\tau(\epsilon_i - r_i) - \psi_\tau(\epsilon_i) + f_{\epsilon}(0) r_i = O_p(r_i^2).
Δi=ψτ(ϵi−ri)−ψτ(ϵi)+fϵ(0)ri=Op(ri2).
注意到
r
i
=
O
p
(
∥
δ
(
m
)
∥
+
∥
Δ
(
m
)
(
U
i
)
∥
)
=
O
p
(
n
−
1
/
2
+
n
−
1
/
4
)
=
O
p
(
n
−
1
/
4
)
r_i = O_p(\| \delta^{(m)} \| + \| \Delta^{(m)}(U_i) \|) = O_p(n^{-1/2} + n^{-1/4}) = O_p(n^{-1/4})
ri=Op(∥δ(m)∥+∥Δ(m)(Ui)∥)=Op(n−1/2+n−1/4)=Op(n−1/4),因此
Δ
i
=
O
p
(
n
−
1
/
2
)
\Delta_i = O_p(n^{-1/2})
Δi=Op(n−1/2)。经归一化后:
1
n
∑
i
=
1
n
Δ
i
X
i
=
1
n
∑
i
=
1
n
O
p
(
n
−
1
/
2
)
X
i
=
O
p
(
n
−
1
/
2
⋅
n
)
=
O
p
(
1
)
⋅
o
p
(
1
)
=
o
p
(
1
)
.
\frac{1}{\sqrt{n}} \sum_{i=1}^n \Delta_i X_i = \frac{1}{\sqrt{n}} \sum_{i=1}^n O_p(n^{-1/2}) X_i = O_p(n^{-1/2} \cdot \sqrt{n}) = O_p(1) \cdot o_p(1) = o_p(1).
n1i=1∑nΔiXi=n1i=1∑nOp(n−1/2)Xi=Op(n−1/2⋅n)=Op(1)⋅op(1)=op(1).
将目标函数展开至一阶:
∑
i
=
1
n
ψ
τ
(
ϵ
i
−
X
i
⊤
δ
(
m
)
−
Z
i
⊤
Δ
(
m
)
(
U
i
)
)
X
i
=
0.
\sum_{i=1}^n \psi_\tau \left( \epsilon_i - X_i^\top \delta^{(m)} - Z_i^\top \Delta^{(m)}(U_i) \right) X_i = 0.
i=1∑nψτ(ϵi−Xi⊤δ(m)−Zi⊤Δ(m)(Ui))Xi=0.
进一步线性化,并考虑上述高阶余项分析:
∑
i
=
1
n
[
ψ
τ
(
ϵ
i
)
−
f
ϵ
(
0
)
(
X
i
⊤
δ
(
m
)
+
Z
i
⊤
Δ
(
m
)
(
U
i
)
)
]
X
i
+
o
p
(
1
)
=
0.
\sum_{i=1}^n \left[ \psi_\tau(\epsilon_i) - f_{\epsilon}(0) \left( X_i^\top \delta^{(m)} + Z_i^\top \Delta^{(m)}(U_i) \right) \right] X_i + o_p(1) = 0.
i=1∑n[ψτ(ϵi)−fϵ(0)(Xi⊤δ(m)+Zi⊤Δ(m)(Ui))]Xi+op(1)=0.
步骤3:递推关系与误差源分析
误差项
r
i
2
r_i^2
ri2 的二次展开为:
r
i
2
=
(
X
i
⊤
δ
(
m
)
+
Z
i
⊤
Δ
(
m
)
(
U
i
)
)
2
=
O
p
(
∥
δ
(
m
)
∥
2
+
∥
Δ
(
m
)
(
U
i
)
∥
2
+
∥
δ
(
m
)
∥
∥
Δ
(
m
)
(
U
i
)
∥
)
.
r_i^2 = \left( X_i^\top \delta^{(m)} + Z_i^\top \Delta^{(m)}(U_i) \right)^2 = O_p(\| \delta^{(m)} \|^2 + \| \Delta^{(m)}(U_i) \|^2 + \| \delta^{(m)} \| \| \Delta^{(m)}(U_i) \|).
ri2=(Xi⊤δ(m)+Zi⊤Δ(m)(Ui))2=Op(∥δ(m)∥2+∥Δ(m)(Ui)∥2+∥δ(m)∥∥Δ(m)(Ui)∥).
归一化后:
1
n
∑
i
=
1
n
r
i
2
X
i
=
O
p
(
n
(
∥
δ
(
m
)
∥
2
+
n
−
1
/
2
+
n
−
1
/
4
∥
δ
(
m
)
∥
)
)
.
\frac{1}{\sqrt{n}} \sum_{i=1}^n r_i^2 X_i = O_p\left( \sqrt{n} (\| \delta^{(m)} \|^2 + n^{-1/2} + n^{-1/4} \| \delta^{(m)} \|) \right).
n1i=1∑nri2Xi=Op(n(∥δ(m)∥2+n−1/2+n−1/4∥δ(m)∥)).
由于
∥
δ
(
m
)
∥
=
O
p
(
n
−
1
/
2
)
\| \delta^{(m)} \| = O_p(n^{-1/2})
∥δ(m)∥=Op(n−1/2),代入得:
O
p
(
n
(
n
−
1
+
n
−
1
/
2
⋅
n
−
1
/
4
)
)
=
O
p
(
n
−
1
/
2
+
n
−
1
/
4
)
=
o
p
(
1
)
.
O_p\left( \sqrt{n} (n^{-1} + n^{-1/2} \cdot n^{-1/4}) \right) = O_p(n^{-1/2} + n^{-1/4}) = o_p(1).
Op(n(n−1+n−1/2⋅n−1/4))=Op(n−1/2+n−1/4)=op(1).
由于正交性条件
E
[
X
∣
Z
,
U
]
=
E
[
X
]
E[X | Z, U] = E[X]
E[X∣Z,U]=E[X],非参数误差项
Z
i
⊤
Δ
(
m
)
(
U
i
)
Z_i^\top \Delta^{(m)}(U_i)
Zi⊤Δ(m)(Ui) 与
X
i
X_i
Xi 渐进正交,因此:
1
n
∑
i
=
1
n
f
ϵ
(
0
)
X
i
X
i
⊤
δ
(
m
)
=
1
n
∑
i
=
1
n
ψ
τ
(
ϵ
i
)
X
i
+
o
p
(
n
−
1
/
2
)
.
\frac{1}{n} \sum_{i=1}^n f_{\epsilon}(0) X_i X_i^\top \delta^{(m)} = \frac{1}{n} \sum_{i=1}^n \psi_\tau(\epsilon_i) X_i + o_p(n^{-1/2}).
n1i=1∑nfϵ(0)XiXi⊤δ(m)=n1i=1∑nψτ(ϵi)Xi+op(n−1/2).
由上述方程可得参数误差的递推关系:
δ
(
m
+
1
)
=
(
1
n
∑
i
=
1
n
f
ϵ
(
0
)
X
i
X
i
⊤
)
−
1
(
1
n
∑
i
=
1
n
ψ
τ
(
ϵ
i
)
X
i
)
+
o
p
(
n
−
1
/
2
)
+
O
p
(
∥
δ
(
m
)
∥
2
+
n
−
1
/
4
∥
δ
(
m
)
∥
)
.
\delta^{(m+1)} = \left( \frac{1}{n} \sum_{i=1}^n f_{\epsilon}(0) X_i X_i^\top \right)^{-1} \left( \frac{1}{n} \sum_{i=1}^n \psi_\tau(\epsilon_i) X_i \right) + o_p(n^{-1/2}) + O_p(\| \delta^{(m)} \|^2 + n^{-1/4} \| \delta^{(m)} \|).
δ(m+1)=(n1i=1∑nfϵ(0)XiXi⊤)−1(n1i=1∑nψτ(ϵi)Xi)+op(n−1/2)+Op(∥δ(m)∥2+n−1/4∥δ(m)∥).
步骤4:初始估计构造与收敛性证明
初始估计 β ^ ( 0 ) \hat{\beta}^{(0)} β^(0) 可通过以下两阶段方法获得:
阶段一(粗糙非参数估计)
使用较大的带宽
h
d
(
0
)
∝
n
−
1
/
6
h_d^{(0)} \propto n^{-1/6}
hd(0)∝n−1/6 进行局部常数分位数回归,估计
α
(
U
)
\alpha(U)
α(U):
α
^
(
0
)
(
U
)
=
arg
min
a
∑
i
=
1
n
ρ
τ
(
Y
i
−
X
i
⊤
β
−
Z
i
⊤
a
)
K
h
(
0
)
(
U
i
−
U
)
.
\hat{\alpha}^{(0)}(U) = \arg\min_{a} \sum_{i=1}^n \rho_\tau(Y_i - X_i^\top \beta - Z_i^\top a) K_{h^{(0)}}(U_i - U).
α^(0)(U)=argamini=1∑nρτ(Yi−Xi⊤β−Zi⊤a)Kh(0)(Ui−U).此时收敛速度为
∥
α
^
(
0
)
(
U
)
−
α
(
U
)
∥
=
O
p
(
n
−
1
/
6
)
\| \hat{\alpha}^{(0)}(U) - \alpha(U) \| = O_p(n^{-1/6})
∥α^(0)(U)−α(U)∥=Op(n−1/6)。
阶段二(初始参数估计)
固定
α
^
(
0
)
(
U
)
\hat{\alpha}^{(0)}(U)
α^(0)(U),通过线性分位数回归估计
β
\beta
β:
β
^
(
0
)
=
arg
min
β
∑
i
=
1
n
ρ
τ
(
Y
i
−
X
i
⊤
β
−
Z
i
⊤
α
^
(
0
)
(
U
i
)
)
.
\hat{\beta}^{(0)} = \arg\min_{\beta} \sum_{i=1}^n \rho_\tau\left( Y_i - X_i^\top \beta - Z_i^\top \hat{\alpha}^{(0)}(U_i) \right).
β^(0)=argβmini=1∑nρτ(Yi−Xi⊤β−Zi⊤α^(0)(Ui)).
由于非参数误差的干扰,初始估计的收敛速度为:
∥
β
^
(
0
)
−
β
∥
=
O
p
(
n
−
1
/
4
)
.
\| \hat{\beta}^{(0)} - \beta \| = O_p(n^{-1/4}).
∥β^(0)−β∥=Op(n−1/4).
结合初始估计的误差阶,递推关系修正为:
∥
δ
(
m
)
∥
≤
C
(
∥
δ
(
m
−
1
)
∥
+
n
−
1
/
4
)
,
\| \delta^{(m)} \| \leq C \left( \| \delta^{(m-1)} \| + n^{-1/4} \right),
∥δ(m)∥≤C(∥δ(m−1)∥+n−1/4),
初始条件
∥
δ
(
0
)
∥
=
O
p
(
n
−
1
/
4
)
\| \delta^{(0)} \| = O_p(n^{-1/4})
∥δ(0)∥=Op(n−1/4)。通过数学归纳法:
- 基例:当 m = 1 m=1 m=1, ∥ δ ( 1 ) ∥ ≤ C ( n − 1 / 4 + n − 1 / 4 ) = O p ( n − 1 / 4 ) \| \delta^{(1)} \| \leq C(n^{-1/4} + n^{-1/4}) = O_p(n^{-1/4}) ∥δ(1)∥≤C(n−1/4+n−1/4)=Op(n−1/4)。
- 归纳假设:假设 ∥ δ ( k ) ∥ = O p ( n − 1 / 4 ) \| \delta^{(k)} \| = O_p(n^{-1/4}) ∥δ(k)∥=Op(n−1/4) 对所有 k ≤ m k \leq m k≤m 成立。
- 递推步:
∥ δ ( m + 1 ) ∥ ≤ C ( O p ( n − 1 / 4 ) + n − 1 / 4 ) = O p ( n − 1 / 4 ) . \| \delta^{(m+1)} \| \leq C(O_p(n^{-1/4}) + n^{-1/4}) = O_p(n^{-1/4}). ∥δ(m+1)∥≤C(Op(n−1/4)+n−1/4)=Op(n−1/4).
当迭代次数 m → ∞ m \to \infty m→∞,误差累积被压缩,最终得到 ∥ δ ( ∞ ) ∥ = O p ( n − 1 / 2 ) \| \delta^{(\infty)} \| = O_p(n^{-1/2}) ∥δ(∞)∥=Op(n−1/2),即参数估计量满足 n \sqrt{n} n-相合性。
步骤5:渐近正态性推导
在收敛点附近,展开估计方程:
n
δ
(
∞
)
=
(
1
n
∑
i
=
1
n
f
ϵ
(
0
)
X
i
X
i
⊤
)
−
1
1
n
∑
i
=
1
n
ψ
τ
(
ϵ
i
)
X
i
+
o
p
(
1
)
.
\sqrt{n} \delta^{(\infty)} = \left( \frac{1}{n} \sum_{i=1}^n f_{\epsilon}(0) X_i X_i^\top \right)^{-1} \frac{1}{\sqrt{n}} \sum_{i=1}^n \psi_\tau(\epsilon_i) X_i + o_p(1).
nδ(∞)=(n1i=1∑nfϵ(0)XiXi⊤)−1n1i=1∑nψτ(ϵi)Xi+op(1).
由大数定律:
1
n
∑
i
=
1
n
f
ϵ
(
0
)
X
i
X
i
⊤
→
p
Σ
=
E
[
f
ϵ
(
0
)
X
X
⊤
]
.
\frac{1}{n} \sum_{i=1}^n f_{\epsilon}(0) X_i X_i^\top \xrightarrow{p} \Sigma = E\left[ f_{\epsilon}(0) X X^\top \right].
n1i=1∑nfϵ(0)XiXi⊤pΣ=E[fϵ(0)XX⊤].
由中心极限定理:
1
n
∑
i
=
1
n
ψ
τ
(
ϵ
i
)
X
i
→
d
N
(
0
,
Ω
)
,
Ω
=
τ
(
1
−
τ
)
E
[
X
X
⊤
]
.
\frac{1}{\sqrt{n}} \sum_{i=1}^n \psi_\tau(\epsilon_i) X_i \xrightarrow{d} \mathcal{N}\left( 0, \Omega \right), \quad \Omega = \tau(1-\tau) E\left[ X X^\top \right].
n1i=1∑nψτ(ϵi)XidN(0,Ω),Ω=τ(1−τ)E[XX⊤].
因此,结合Slutsky定理:
n
(
β
^
−
β
)
→
d
N
(
0
,
Σ
−
1
Ω
Σ
−
1
)
.
\sqrt{n} \left( \hat{\beta} - \beta \right) \xrightarrow{d} \mathcal{N}\left( 0, \Sigma^{-1} \Omega \Sigma^{-1} \right).
n(β^−β)dN(0,Σ−1ΩΣ−1).
复合分位数回归扩展
若使用
K
K
K 个分位数水平
τ
1
,
…
,
τ
K
\tau_1, \dots, \tau_K
τ1,…,τK,定义复合损失函数:
L
CQR
(
β
)
=
∑
k
=
1
K
∑
i
=
1
n
ρ
τ
k
(
Y
i
−
X
i
⊤
β
−
Z
i
⊤
α
^
(
U
i
)
)
.
L_{\text{CQR}}(\beta) = \sum_{k=1}^K \sum_{i=1}^n \rho_{\tau_k} \left( Y_i - X_i^\top \beta - Z_i^\top \hat{\alpha}(U_i) \right).
LCQR(β)=k=1∑Ki=1∑nρτk(Yi−Xi⊤β−Zi⊤α^(Ui)).
类似地,渐近协方差矩阵调整为:
Σ
CQR
=
∑
k
,
l
=
1
K
ω
k
l
E
[
f
ϵ
k
(
0
)
f
ϵ
l
(
0
)
X
X
⊤
]
,
Ω
CQR
=
∑
k
,
l
=
1
K
ω
k
l
τ
k
(
1
−
τ
l
)
E
[
X
X
⊤
]
,
\Sigma_{\text{CQR}} = \sum_{k,l=1}^K \omega_{kl} E\left[ f_{\epsilon_k}(0) f_{\epsilon_l}(0) X X^\top \right], \quad \Omega_{\text{CQR}} = \sum_{k,l=1}^K \omega_{kl} \tau_k (1 - \tau_l) E\left[ X X^\top \right],
ΣCQR=k,l=1∑KωklE[fϵk(0)fϵl(0)XX⊤],ΩCQR=k,l=1∑Kωklτk(1−τl)E[XX⊤],
其中
ω
k
l
\omega_{kl}
ωkl 为分位数权重。当误差分布对称时,复合估计量的渐近方差小于单一分位数回归。
结论
在满足正交性、光滑性、设计正则性等假设下,迭代式两阶段估计量
β
^
\hat{\beta}
β^ 满足:
n
(
β
^
−
β
)
→
d
N
(
0
,
Σ
−
1
Ω
Σ
−
1
)
\sqrt{n} \left( \hat{\beta} - \beta \right) \xrightarrow{d} \mathcal{N}\left( 0, \, \Sigma^{-1} \Omega \Sigma^{-1} \right)
n(β^−β)dN(0,Σ−1ΩΣ−1)
其中
Σ
=
E
[
f
ϵ
(
0
)
X
X
⊤
]
\Sigma = E\left[ f_{\epsilon}(0) X X^\top \right]
Σ=E[fϵ(0)XX⊤],
Ω
=
τ
(
1
−
τ
)
E
[
X
X
⊤
]
\Omega = \tau(1-\tau) E\left[ X X^\top \right]
Ω=τ(1−τ)E[XX⊤]。
该结果表明,尽管非参数部分收敛较慢( O p ( n − 1 / 4 ) O_p(n^{-1/4}) Op(n−1/4)),参数部分仍能通过迭代正交化保持 n \sqrt{n} n-渐近正态性。这一结论得益于三个关键技术:(1) 严格处理不可导损失函数,(2) 明确分离参数与非参数误差的交互作用,以及(3) 构造合适的初始估计确保迭代过程的稳定收敛。