两种论文结构(“Preliminary”型” 和 “Related Study”型)各有其特点和适用场景,具体选择取决于研究的背景、领域惯例以及文章内容的逻辑需求。以下是两种写法的特点、适用场景和对比分析:
第一种结构:Preliminary 型
-
结构特点:
- Introduction: 在引言中提到部分文献,简单介绍研究背景、现状、研究空白以及论文的创新点和目标。
- Preliminary: 用一整章阐述与本文相关的预备知识、基础方法或研究的理论框架。
- 后续章节(比如方法、实验等)再进一步展开研究内容。
-
优点:
- 逻辑清晰:通过 Preliminaries(预备知识)对研究的理论背景、相关技术或必要的定义进行系统阐述,使读者能快速理解后续内容。
- 适合复杂理论和方法:当研究涉及到较多的数学模型、算法或背景知识时,这种结构可以避免在后续章节中频繁中断叙述,为主干内容的呈现打好基础。
- 凸显独立性:有助于文章自成体系地展示研究基础知识,便于后续研究者引用。
-
适用场景:
- 理论性强的研究:如包含复杂数学推导、独特定义或新颖的模型(如计算机领域中的深度学习算法,或机械故障诊断中的特征提取方法)。
- 跨学科研究:当论文可能涉及多个领域的知识(如迁移学习与机械工程的结合),需要明确区分两个领域的基础内容。
- 针对非专业读者:如果目标期刊面向较广泛的学术读者,而不仅限于某一小领域的专家。
-
典型领域和期刊:
- 工程论文(如涉及物理原理或建模过程)。
- 机器学习/深度学习领域的期刊,尤其是提出新模型或方法时。
第二种结构:Related Study 型
-
结构特点:
- Introduction: 在引言中通过引用部分文献总结研究背景和现状,引出研究问题或空白,并明确论文主题。
- Related Study: 用一整章系统性地梳理已有的相关研究,详细分析其优缺点,以及与本文研究之间的联系和区别。
- 后续章节(如方法、实验等)介绍自己的研究内容。
-
优点:
- 强化研究空白:通过 Related Study 的梳理和分析,能够更全面地阐述已有研究的不足和改进空间,从而突出自己工作的价值。
- 便于学术比较:为读者提供一个综述性章节,展示已有工作的进展及其不足,使研究内容更有层次感和学术性。
- 强调领域相关性:通过聚焦已有研究,能够帮助目标期刊的领域专家快速理解文章在领域中的位置和贡献。
-
适用场景:
- 已有研究较丰富的领域:当某一领域已有大量研究,读者可能熟悉大部分相关内容时,用 Related Study 梳理可以更系统地分析已有工作的局限性。
- 改进型研究:当论文的创新点是在已有方法上做改进(例如性能优化、应用迁移等),可以通过 Related Study 凸显已有工作的不足。
- 成熟领域的论文:如深度学习、机器视觉等已经非常成熟的领域,使用 Related Study 更符合读者期望。
-
典型领域和期刊:
- 信息技术与计算机(如 IEEE、ACM 会议论文)。
- 实验与工程优化类的论文。
两种结构的对比
维度 | Preliminary 型 | Related Study 型 |
---|---|---|
读者预期 | 适合需要更多背景知识的读者,尤其是跨学科研究或方法复杂的研究。 | 适合领域内已有研究较多的情况,读者可能更关心已有研究和论文创新点的比较。 |
对方法的依赖程度 | 强调基础理论和方法,适用于方法复杂、理论性强的研究。 | 更关注现有方法的梳理,适用于改进型研究或实验驱动型研究。 |
逻辑流畅性 | 逻辑较自然,先铺垫预备知识,后展开研究工作。 | 在详细梳理相关研究的基础上提出问题与创新,强调与已有工作的对比。 |
适用场景 | 数学建模、新方法设计、理论性研究或背景跨学科研究。 | 应用于已有研究丰富的成熟领域,或强调改进现有方法的研究。 |
篇幅安排 | Preliminaries 通常较简短,为后续章节做铺垫。 | Related Study 可能需要较大篇幅分析领域内工作,显得更全面。 |
实际写作中的灵活选择
-
结合使用:
- 在一些复杂研究中,可以在引言(Introduction)中提到一部分相关研究,随后在第二章分开写作 Preliminary 和 Related Study,两者结合使用。例如:
- Preliminary 用于介绍基础知识或关键理论。
- Related Study 专门分析相关研究,突出论文的创新点。
- 这种结构在方法复杂且领域已有研究较多的情况下十分有效。
- 在一些复杂研究中,可以在引言(Introduction)中提到一部分相关研究,随后在第二章分开写作 Preliminary 和 Related Study,两者结合使用。例如:
-
选择依据:
- 如果方法独特且复杂:选择 Preliminary 型,先铺垫基础理论,再展开自己的工作。
- 如果领域内已有丰富研究:选择 Related Study 型,系统梳理已有工作并突出论文的贡献。
- 结合期刊要求和领域习惯:部分期刊可能偏向某种结构,选择时需要结合目标期刊的风格和审稿人偏好。
-
基于研究内容调整:
- 若论文研究基于复杂的迁移学习理论,推荐采用 Preliminary 型,因为需要引入基础理论。
- 若主要工作是基于已有方法的改进(如对部分集域适应方法的优化),推荐采用 Related Study 型,突出与已有工作的对比。