合成孔径雷达(SAR)处理算法分类详解
目录
简介
合成孔径雷达(Synthetic Aperture Radar,简称SAR)是一种高分辨率成像雷达系统,能够在各种天气和光照条件下对地面进行精确成像。SAR通过移动平台(如卫星或飞机)上的天线运动,合成出比物理天线孔径更大的“合成孔径”,从而提高成像分辨率。根据不同的成像需求和应用场景,SAR可以采用多种成像模式和处理算法,每种模式和算法具有独特的特点和适用范围。
合成孔径雷达的基本原理
雷达方程
雷达系统的性能通常由雷达方程描述,它反映了发射功率、目标特性、传播损耗等因素对接收信号强度的影响。基本雷达方程为:
P r = P t G 2 λ 2 σ ( 4 π ) 3 R 4 L P_r = \frac{P_t G^2 \lambda^2 \sigma}{(4\pi)^3 R^4 L} Pr=(4π)3R4LPtG2λ2σ
其中:
- P r P_r Pr :接收功率
- P t P_t Pt :发射功率
- G G G :天线增益
- λ \lambda λ :雷达波长
- σ \sigma σ :目标雷达截面积
- R R R :雷达与目标的距离
- L L L :系统损耗
合成孔径概念
在SAR中,雷达天线随着平台的移动沿飞行轨道前进,雷达从多个不同位置发射和接收信号。这些多位置的回波信号通过信号处理技术进行合成,等效于使用一个非常长的天线孔径进行成像。这个“合成孔径”使得SAR能够在方位向上实现高分辨率。
分辨率分析
SAR的分辨率分为两部分:距离向分辨率和方位向分辨率。
-
距离向分辨率:由雷达脉冲的带宽决定,公式为:
Δ R = c 2 B \Delta R = \frac{c}{2B} ΔR=2Bc
其中, c c c 为光速, B B B 为脉冲带宽。
-
方位向分辨率:由合成孔径长度决定,公式为:
Δ L a = λ R 2 L a \Delta L_a = \frac{\lambda R}{2L_a} ΔLa=2LaλR
其中, λ \lambda λ 为雷达波长, R R R 为距离, L a L_a La 为合成孔径长度。
按照成像模式分类
根据SAR系统的工作方式和成像策略,主要可分为以下几种成像模式:
侧视模式(Stripmap SAR)
特点
- 天线方向与平台运动方向垂直,连续侧视地面,形成长条状图像。
- 天线保持固定的指向方向,与飞行方向垂直扫描。
- 合成孔径长度与平台飞行路径长度相同,方位向分辨率固定。
应用
- 广泛用于常规地面成像,如地形测绘、农业监测、林业调查等。
数学模型
在侧视模式下,回波信号的相位模型可以表示为:
ϕ ( n T ) = 4 π λ R ( n T ) \phi(nT) = \frac{4\pi}{\lambda} R(nT) ϕ(nT)=λ4πR(nT)
其中, R ( n T ) R(nT) R(nT) 是目标到雷达的距离随时间的变化。通过对多个脉冲回波进行相干积累,合成出较长的合成孔径,从而提高方位向分辨率:
S = ∑ n = 0 N − 1 s ( n T ) e − j ϕ ( n T ) S = \sum_{n=0}^{N-1} s(nT) e^{-j \phi(nT)} S=n=0∑N−1s(nT)