聚类算法——OPTICS(Ordering Points To Identify the Clustering Structure)详解

OPTICS(Ordering Points To Identify the Clustering Structure)详解

目录

  1. 简介
  2. OPTICS的基本概念
  3. 核心参数
  4. 核心距离与可达距离
  5. 可达图与聚类顺序
  6. OPTICS算法步骤
  7. 数学公式详解
  8. 算法复杂度与优化
  9. 优缺点分析
  10. 代码示例

简介

OPTICS(Ordering Points To Identify the Clustering Structure)是一种基于密度的聚类算法,由Ankerst等人在1999年提出。与DBSCAN(Density-Based Spatial Clustering of Applications with Noise)类似,OPTICS能够发现任意形状的簇,并有效处理噪声数据。然而,OPTICS更为灵活,因为它无需预先指定簇的数量或密度参数,通过构建可达图(Reachability Plot)揭示数据的多层次聚类结构,使用户能够在不同的密度层次上提取聚类结果。

OPTICS的基本概念

OPTICS的核心思想是通过对数据点进行有序排列,使得相似的数据点在排列中相邻,从而揭示数据的聚类结构。这种有序排列基于点的密度可达性(Density Reachability),具体来说,OPTICS通过计算每个点的核心距离(Core Distance)和可达距离(Reachability Distance)来决定排列的顺序。最终,OPTICS生成一个聚类顺序以及对应的可达距离序列,通过这些信息,可以构建可达图,进而提取不同密度层次的聚类。

核心参数

OPTICS算法主要依赖于以下两个参数:

  • ε(Epsilon):邻域半径,定义了一个点的ε-邻域内包含的所有点。虽然OPTICS不像DBSCAN那样严格依赖于ε,但该参数仍用于限制邻域搜索的范围,以提高算法效率。

  • MinPts(最小点数):在ε邻域内被视为核心点的最小点数。MinPts的选择影响着簇的密度要求,较高的MinPts值会使算法更加严格,识别出的簇密度更高。

这些参数决定了数据点被分类为核心点、边界点或噪声点,从而影响最终的聚类结果。

核心距离与可达距离

核心距离(Core Distance)

核心距离是一个点在其ε邻域内第MinPts个最近邻的距离。如果一个点的ε邻域内的点数少于MinPts,则该点的核心距离未定义(通常视为无穷大或某一最大值)。

数学表达式为:

core_dist ( p ) = { distance ( p , sorted_minPts_neighbor ( p ) ) 如果  ∣ N ϵ ( p ) ∣ ≥ MinPts ∞ 否则 \text{core\_dist}(p) = \begin{cases} \text{distance}(p, \text{sorted\_minPts\_neighbor}(p)) & \text{如果 } |\mathcal{N}_\epsilon(p)| \geq \text{MinPts} \\ \infty & \text{否则} \end{cases} core_dist(p)={ distance(p,sorted_minPts_neighbor(p))如果 Nϵ(p)MinPts否则

其中, N ϵ ( p ) \mathcal{N}_\epsilon(p) Nϵ(p)表示点 p p p的ε-邻域, sorted_minPts_neighbor ( p ) \text{sorted\_minPts\_neighbor}(p) sorted_minPts_neighbor(p)表示点 p p p的第MinPts近邻。

可达距离(Reachability Distance)

可达距离衡量的是从一个点到另一个点的密度可达性。具体来说,对于两个点 p p p o o o,点 o o o相对于点 p p p的可达距离定义为两者核心距离和它们之间距离的较大值:

reachability ( p , o ) = max ⁡ ( core_dist ( o ) , distance ( p , o ) ) \text{reachability}(p, o) = \max(\text{core\_dist}(o), \text{distance}(p, o)) reachability(p,o)=max(core_dist(o

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DuHz

喜欢就支持一下 ~ 谢谢啦!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值