希尔伯特变换:详细的理论与推导
目录
- 前言
- 希尔伯特变换的严格定义与数学推导
2.1 时域积分定义
2.2 频域相移推导
2.3 全通滤波器的性质说明
2.4 解析信号与负频率消除 - 希尔伯特变换的进一步推导与性质
3.1 奇异积分的主值含义
3.2 在卷积形式下的实现
3.3 与柯西积分公式的联系简述 - 离散域希尔伯特变换及常用实现方法
4.1 DFT/FFT法与相移
4.2 FIR滤波器近似实现 - 解析信号与瞬时特性
5.1 解析信号(Analytic Signal)构造
5.2 瞬时幅度、相位与频率的数学表达 - 典型应用
6.1 包络检测与幅度解调
6.2 单边带(SSB)调制与解调
6.3 Hilbert-Huang变换(HHT) - 详细推导示例
7.1 希尔伯特变换的频域推导
7.2 解析信号负频率抑制推导 - Python示例代码
- 代码简要解读
前言
希尔伯特变换(Hilbert Transform)在现代信号处理和通信领域拥有广泛的应用,如包络检测、单边带调制、瞬时频率分析和语音处理等。它可以将一个实信号映射到其正交信号,进一步与原信号构成解析信号(Analytic Signal)。
在本章节中,我们将从最基础的连续域数学定义出发,结合频域推导与典型积分公式,给出希尔伯特变换的严格理论以及在离散实现中的一些关键细节。
希尔伯特变换的严格定义与数学推导
2.1 时域积分定义
对一个实值信号 x ( t ) x(t) x(t),其希尔伯特变换 x ^ ( t ) \hat{x}(t) x^(t)在连续时间域的定义为:
x ^ ( t ) = H { x ( t ) } = 1 π p . v . ∫ − ∞ + ∞ x ( τ ) t − τ d τ , \hat{x}(t) = \mathcal{H}\{x(t)\} \;=\; \frac{1}{\pi} \; \mathrm{p.v.} \int_{-\infty}^{+\infty} \frac{x(\tau)}{t - \tau}\,d\tau, x^(t)=H{
x(t)}=π1p.v.∫−∞+∞t−τx(τ)dτ,
其中 p . v . \mathrm{p.v.} p.v. 表示主值积分(Principal Value),因为 1 t − τ \frac{1}{t - \tau} t−τ1在 τ = t \tau = t τ=t处存在奇点,需要通过主值方式来保证积分的可定义性。
我们也常把它写成卷积形式:
x ^ ( t ) = x ( t ) ∗ ( 1 π t ) . \hat{x}(t) = x(t) * \left(\frac{1}{\pi t}\right). x^(t)=x(t)∗(πt1).
显然, 1 π t \frac{1}{\pi t} πt1是一个不绝对可积且在零点处奇异的函数,因此直接在时域实现时,需要较多的技术处理(比如截断、加窗等)。
2.2 频域相移推导
令 X ( ω ) X(\omega) X(ω)为 x ( t ) x(t) x(t)的傅里叶变换,则希尔伯特变换 x ^ ( t ) \hat{x}(t) x^(t)的傅里叶变换 X ^ ( ω ) \hat{X}(\omega) X^(ω)满足如下重要关系:
X ^ ( ω ) = − j sgn ( ω ) X ( ω ) , \hat{X}(\omega) \;=\; -\,j \,\text{sgn}(\omega)\;X(\omega), X^(ω)=−jsgn(ω)X(ω),
其中
sgn ( ω ) = { + 1 , ω > 0 , 0 , ω = 0 , − 1 , ω < 0. \text{sgn}(\omega) = \begin{cases} +1, & \omega > 0,\\ 0, & \omega = 0,\\ -1, & \omega < 0. \end{cases} sgn(ω)=⎩
⎨
⎧+1,0,−1,ω>0,ω=0,ω<0.
也可以简要记为,在正频率( ω > 0 \omega>0 ω>0)施加 − 9 0 ∘ -90^\circ −90∘相移(