频域特征指标详解

频域特征指标详解

在信号分析中,频域分析是通过傅里叶变换将信号从时域转到频域,帮助我们理解信号的频谱特性。频域特征指标是用来描述信号频谱特性的重要工具,常见的频域特征指标包括:重心频率、均方频率、均方根频率、频率方差和频率标准差。下面我们将详细讲解这些频域特征指标。

目录

  1. 重心频率 (Centroid Frequency)
  2. 均方频率 (Mean Squared Frequency)
  3. 均方根频率 (Root Mean Square Frequency)
  4. 频率方差 (Frequency Variance)
  5. 频率标准差 (Frequency Standard Deviation)
  6. 代码实现及解读

1. 重心频率 (Centroid Frequency)

重心频率,也称为频率中心,是频谱中信号的“质量中心”,它反映了信号频谱的中心位置。重心频率的定义为:

f centroid = ∑ i = 1 N f i ∣ X ( f i ) ∣ 2 ∑ i = 1 N ∣ X ( f i ) ∣ 2 f_{\text{centroid}} = \frac{\sum_{i=1}^{N} f_i |X(f_i)|^2}{\sum_{i=1}^{N} |X(f_i)|^2} fcentroid=i=1NX(fi)2i=1NfiX(fi)2

其中:

  • f i f_i fi 是第 i i i个频率点,
  • X ( f i ) X(f_i) X(fi) 是信号在频率 f i f_i fi 处的幅值,
  • N N N 是频谱中的总频率点数。

数学推导:

重心频率可以看作是频谱的加权平均频率。其计算方式为,所有频率成分按其幅度平方加权,然后求加权后的频率的平均值。

物理意义:

重心频率反映了信号的“中心”频率,或者说是信号频率分布的平均位置。若重心频率较低,表示信号中低频成分较多;若重心频率较高,表示信号中高频成分较多。

2. 均方频率 (Mean Squared Frequency)

均方频率是频谱的二阶矩,用来描述频谱的平均频率的平方。均方频率的定义为:

f mean squared = ∑ i = 1 N f i 2 ∣ X ( f i ) ∣ 2 ∑ i = 1 N ∣ X ( f i ) ∣ 2 f_{\text{mean squared}} = \frac{\sum_{i=1}^{N} f_i^2 |X(f_i)|^2}{\sum_{i=1}^{N} |X(f_i)|^2} fmean squared=

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DuHz

喜欢就支持一下 ~ 谢谢啦!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值