频域特征指标详解
在信号分析中,频域分析是通过傅里叶变换将信号从时域转到频域,帮助我们理解信号的频谱特性。频域特征指标是用来描述信号频谱特性的重要工具,常见的频域特征指标包括:重心频率、均方频率、均方根频率、频率方差和频率标准差。下面我们将详细讲解这些频域特征指标。
目录
- 重心频率 (Centroid Frequency)
- 均方频率 (Mean Squared Frequency)
- 均方根频率 (Root Mean Square Frequency)
- 频率方差 (Frequency Variance)
- 频率标准差 (Frequency Standard Deviation)
- 代码实现及解读
1. 重心频率 (Centroid Frequency)
重心频率,也称为频率中心,是频谱中信号的“质量中心”,它反映了信号频谱的中心位置。重心频率的定义为:
f centroid = ∑ i = 1 N f i ∣ X ( f i ) ∣ 2 ∑ i = 1 N ∣ X ( f i ) ∣ 2 f_{\text{centroid}} = \frac{\sum_{i=1}^{N} f_i |X(f_i)|^2}{\sum_{i=1}^{N} |X(f_i)|^2} fcentroid=∑i=1N∣X(fi)∣2∑i=1Nfi∣X(fi)∣2
其中:
- f i f_i fi 是第 i i i个频率点,
- X ( f i ) X(f_i) X(fi) 是信号在频率 f i f_i fi 处的幅值,
- N N N 是频谱中的总频率点数。
数学推导:
重心频率可以看作是频谱的加权平均频率。其计算方式为,所有频率成分按其幅度平方加权,然后求加权后的频率的平均值。
物理意义:
重心频率反映了信号的“中心”频率,或者说是信号频率分布的平均位置。若重心频率较低,表示信号中低频成分较多;若重心频率较高,表示信号中高频成分较多。
2. 均方频率 (Mean Squared Frequency)
均方频率是频谱的二阶矩,用来描述频谱的平均频率的平方。均方频率的定义为:
f mean squared = ∑ i = 1 N f i 2 ∣ X ( f i ) ∣ 2 ∑ i = 1 N ∣ X ( f i ) ∣ 2 f_{\text{mean squared}} = \frac{\sum_{i=1}^{N} f_i^2 |X(f_i)|^2}{\sum_{i=1}^{N} |X(f_i)|^2} fmean squared=