多目标跟踪中的数据关联:轨迹式MHT(多假设跟踪)详解

多目标跟踪中的数据关联:轨迹式MHT(多假设跟踪)详解

1. 背景与概述

多目标跟踪(Multi-Target Tracking, MTT)是跟踪多个运动目标在时间序列中的状态(位置、速度等)的过程,应用于雷达、视频监控、自动驾驶等众多领域。 其中一个最关键、最具挑战性的环节就是数据关联(Data Association):如何在纷繁复杂、测量噪声和遮挡等条件下,确定当前时刻获得的观测(或检测)属于哪个目标,以及如何从这些观测中保持目标轨迹的连续性。在多目标场景中,每个时刻往往会得到多个观测,为了给每个目标分配正确观测并更新目标状态,需要综合考虑各种假设(Hypothesis)。如果仅依赖对“局部时刻”和“局部数据”的简单关联规则,容易产生误关联或漏关联,从而导致目标身份混淆,轨迹断裂或错误合并。 因此,一个更加系统化和稳定的方法就是多假设跟踪(Multi-Hypothesis Tracking, MHT)。MHT方法根据历史观测和当前观测,以分支的形式维护多个“合理”假设,然后在之后的时刻基于“证据”逐渐淘汰不合理假设,保留并合并最可信的关联结果。
在MHT家族中,根据实现思路或数据结构的不同,可以分为基于假设(Hypothesis-Oriented)的MHT和基于轨迹(Track-Oriented)的MHT。我们这里着重介绍轨迹式MHT(Track-Oriented MHT)


2. 轨迹式MHT的基本思想

2.1 基本概念

  1. 观测集:在第 k k k 时刻,我们得到的观测(测量)集合为
    Z k = { z k , 1 , z k , 2 , … , z k , m k } , Z_k = \{ \mathbf{z}_{k,1}, \mathbf{z}_{k,2}, \dots, \mathbf{z}_{k,m_k} \}, Zk={ zk,1,zk,2,,zk,mk},
    其中 m k m_k mk 是在第 k k k 时刻检测到的目标数(或测量数)。

  2. 轨迹(Track):在MHT中,我们将从初始时刻到当前时刻,某个目标的测量序列视为一条轨迹。对于轨迹式MHT,当我们说“产生一个轨迹”时,意味着我们对一系列时刻里各个观测的关联给出一种假设:哪些观测属于同一个目标。

  3. 多假设:由于每次都有多个观测,可能存在多种观测-轨迹的匹配方式。MHT算法对于每一种合理的匹配都生成并保留一个假设分支,以防止过早地做出“错误决策”。

2.2 思路:分支与合并

  • 分支(Branching):当新时刻到来时,每条轨迹可能与若干个新观测匹配(或者未匹配),从而分裂出不同假设,使轨迹数成倍增加。
  • 合并(Pruning / Merging):为了限制轨迹数目的指数式膨胀,我们需要定期或实时地将相似轨迹合并、修剪概率很小或似然很低的轨迹分支。

轨迹式MHT的独特之处在于,它围绕“轨迹”这个核心概念去建模并展开,而非直接在全局假设空间中维护巨大而繁杂的全局数据关联树。


3. 轨迹式MHT的数学框架

3.1 目标状态与观测模型

一般来说,系统可以用状态方程与观测方程来描述目标的运动及其测量关系:

  • 状态方程
    x k = F k − 1 x k − 1 + w k − 1 , \mathbf{x}_{k} = \mathbf{F}_{k-1} \mathbf{x}_{k-1} + \mathbf{w}_{k-1}, xk=Fk1xk1+wk1,
    其中 x k ∈ R n \mathbf{x}_k \in \mathbb{R}^n xkRn 表示目标在时刻 k k k 的状态(位置、速度等), F k − 1 \mathbf{F}_{k-1} Fk1 是状态转移矩阵, w k − 1 \mathbf{w}_{k-1} wk1 是过程噪声。

  • 观测方程
    z k , j = H k x k + v k , j , \mathbf{z}_{k,j} = \mathbf{H}_k \mathbf{x}_k + \mathbf{v}_{k,j}, zk,j=Hkxk+vk,j,
    其中 z k , j \mathbf{z}_{k,j} zk,j 表示时刻 k k k 获得的第 j j j 个观测向量, H k \mathbf{H}_k Hk 是测量矩阵, v k , j \mathbf{v}_{k,j} vk,j 是测量噪声。

3.2 关联假设的概率模型

在MHT中,一条轨迹对应于一串测量序列 { z k , i ( k ) } \{\mathbf{z}_{k,i(k)}\} { zk,i(k)},其对应的关联假设可以用“事件”表示:

  • 事件 α \alpha α: “时刻 k k k 的观测 z k , j \mathbf{z}_{k,j} zk,j 来自某个目标轨迹 τ \tau τ”;
  • 事件 β \beta β: “时刻 k k k 未检测到目标 τ \tau τ”;
  • 事件 γ \gamma γ: “时刻 k k k 的观测 z k , j \mathbf{z}_{k,j} zk,j 是杂波 / 虚警。”

如果我们建立了一个(部分)关联假设 Θ \Theta Θ,则它对应一个“联合事件”
Θ = ⋂ τ ∈ T , k = 1 , … , K E τ , k , \Theta = \bigcap_{\tau \in \mathcal{T}, k=1,\dots,K} E_{\tau,k} , Θ=τT,k=1,,KEτ,k,
其中 T \mathcal{T} T 表示所有可能的目标轨迹集合, E τ , k E_{\tau,k} Eτ,k 表示对轨迹 τ \tau τ 在时刻 k k k 对应的具体关联事件(可能是 α , β \alpha, \beta α,β γ \gamma γ中的一种)。MHT希望在所有可能的 Θ \Theta Θ 中找出具有最高后验概率最大似然值的关联假设。假设我们有先验的目标出现概率、探测概率、虚警率等参数,则可通过贝叶斯公式进行推理。

3.3 轨迹似然与打分

3.3.1 似然函数

对于一条轨迹 τ \tau τ(假设包含了时刻1到时刻K之间若干测量),它的似然可以表示为
p ( τ ) = p ( τ ∣ Z 1 : K ) = ∏ k = 1 K [ p ( z k , i ( k ) ∣ x k ) ⋅ P D + ( 1 − P D ) + λ ] , p(\tau) = p(\tau \mid Z_{1:K}) = \prod_{k=1}^{K} \left[ p(\mathbf{z}_{k,i(k)} \mid \mathbf{x}_k) \cdot P_D + (1-P_D) + \lambda \right], p(τ)=p(τZ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DuHz

喜欢就支持一下 ~ 谢谢啦!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值