步进调频连续波(SFMCW)雷达的主要优势与劣势详解
本文将对步进调频连续波(Step-Frequency Modulated Continuous Wave,简称 SFMCW)雷达的工作原理、主要优势和劣势进行详细说明。
1. 基本概念
在传统的线性调频连续波(FMCW)雷达中,发射信号往往是一个在连续时间里线性上升或下降的调频信号;而步进调频连续波(SFMCW)雷达则是将发射信号的频率离散地分多个台阶(step)进行扫频。每一个“步进”对应一个较窄带宽的连续波信号,通过在不同步进频点上轮流发射,最终覆盖一段较宽的总带宽,以实现类似宽带测距的能力。简而言之,SFMCW雷达不像普通FMCW那样“连续扫”,而是按照一个个“频率点”跳频地在一定带宽范围内“分段发射并接收”。然后在信号处理阶段将各个频点所获得的信息综合起来,得到最终的目标信息(如距离、速度、角度等)。
2. SFMCW雷达的工作原理
2.1 信号模型
设发射信号在第
n
n
n 个步进(
n
=
0
,
1
,
2
,
…
,
N
−
1
n = 0, 1, 2, \ldots, N-1
n=0,1,2,…,N−1)的中心频率为
f
n
=
f
0
+
n
⋅
Δ
f
f_n = f_0 + n \cdot \Delta f
fn=f0+n⋅Δf
其中:
- f 0 f_0 f0 为起始频率;
- Δ f \Delta f Δf 为步进频率间隔(步进大小);
- N N N 为步进总数。
在第
n
n
n 步进期间,雷达发射的信号可以表示为:
s
t
x
(
t
)
=
A
cos
(
2
π
f
n
t
)
,
t
∈
[
T
n
,
T
n
+
T
s
)
s_{tx}(t) = A \cos\left(2\pi f_n t\right), \quad t \in [T_n, T_n + T_s)
stx(t)=Acos(2πfnt),t∈[Tn,Tn+Ts)
- T s T_s Ts 为每个步进的发射时长;
- T n T_n Tn 表示第 n n n 个步进的开始时刻(与前一个步进衔接)。
若目标在距离
R
R
R 处,接收信号将带有延迟
τ
\tau
τ:
τ
=
2
R
c
\tau = \frac{2R}{c}
τ=c2R
其中
c
c
c 为光速。
则接收信号近似可写为:
s
r
x
(
t
)
≈
A
′
cos
(
2
π
f
n
(
t
−
τ
)
)
.
s_{rx}(t) \approx A' \cos\left(2\pi f_n (t - \tau)\right).
srx(t)≈A′cos(2πfn(t−τ)).
此处略去了目标散射系数等因素,仅保留关键信号形式。
2.2 信号处理与距离推断
在步进调频的过程中,我们实际上在“频域”上对目标进行取样。经过混频(本振信号为
f
n
f_n
fn ,混频后做低通滤波),我们得到混频输出(差频信号):
s
I
F
,
n
(
t
)
=
LPF
{
s
t
x
(
t
)
⋅
s
r
x
(
t
)
}
.
s_{\mathrm{IF},n}(t) = \text{LPF}\{s_{tx}(t)\cdot s_{rx}(t)\}.
sIF,n(t)=LPF{stx(t)⋅srx(t)}.
由于
s
t
x
(
t
)
≈
cos
(
2
π
f
n
t
)
s_{tx}(t) \approx \cos(2 \pi f_n t)
stx(t)≈cos(2πfnt),
s
r
x
(
t
)
≈
cos
(
2
π
f
n
(
t
−
τ
)
)
s_{rx}(t) \approx \cos\left(2 \pi f_n (t - \tau)\right)
srx(t)≈cos(2πfn(t−τ)),当二者相乘后,差频(拍频)主要在:
f
b
,
n
=
f
n
−
f
n
=
0
(
直流分量
)
和
f
n
+
f
n
=
2
f
n
(
高频分量
)
,
f_{\mathrm{b},n} = f_n - f_n = 0 \quad (\text{直流分量}) \quad\text{和}\quad f_n + f_n = 2 f_n \quad(\text{高频分量}),
fb,n=fn−fn=0(直流分量)和fn+fn=2fn(高频分量),
高频分量会被低通滤除,理想情况下差频就趋近于零。但实际上目标会有微弱的多普勒频移或者会在不同步进之间累积相位差,所以我们关心的是其相位差。在第
n
n
n 个步进时,如果目标距离为
R
R
R,则混频信号的相位差可以写成:
ϕ
n
=
−
2
π
f
n
R
c
×
2
\phi_n = -2\pi \frac{f_n R}{c} \times 2
ϕn=−2πcfnR×2
(此处乘 2 是因为往返路径;若考虑更严格模型可展开成
ϕ
n
=
−
2
π
f
n
τ
\phi_n = -2\pi f_n \tau
ϕn=−2πfnτ 且
τ
=
2
R
/
c
\tau = 2R/c
τ=2R/c。)
由此可见,在多个不同频率 f n f_n fn 下采集到的相位信息,就像是在频域采样目标的散射信息。将这 N N N 个步进频率点上的回波相位 ϕ n \phi_n ϕn合并起来做逆离散傅里叶变换(IDFT),即可获得目标在距离维度的分辨能力,类似于合成孔径的概念:
R
(
k
)
=
∑
n
=
0
N
−
1
S
n
e
j
2
π
n
k
N
R(k) = \sum_{n=0}^{N-1} S_n \, e^{j 2\pi \frac{n k}{N}}
R(k)=n=0∑N−1Snej2πNnk
这里
S
n
S_n
Sn 可认为是混频后得到的复数信号值(振幅和相位),
k
k
k 为离散距离单元索引,最终得到的
∣
R
(
k
)
∣
|R(k)|
∣R(k)∣ 类似雷达的距离像(range profile)。
2.3 距离分辨率
SFMCW实现的等效带宽为
B
e
q
=
N
⋅
Δ
f
.
B_{\mathrm{eq}} = N \cdot \Delta f.
Beq=N⋅Δf.
对应的距离分辨率(忽略窗函数和处理增益等因素)可近似为:
Δ
R
=
c
2
B
e
q
=
c
2
N
Δ
f
.
\Delta R = \frac{c}{2 B_{\mathrm{eq}}} = \frac{c}{2 N \Delta f}.
ΔR=2Beqc=2NΔfc.
可以看出,想要实现更高的距离分辨率,就需要较大的合成带宽
B
e
q
B_{\mathrm{eq}}
Beq。而SFMCW通过分步来获得这一宽带,有时比直接做高速调制更方便。
3. SFMCW雷达的主要优势
-
硬件实现复杂度相对较低
- 在某些高频段(如毫米波、太赫兹)直接做大带宽的“线性扫频”在技术上难度大且成本高,而SFMCW则可以通过在若干较窄带宽的子频段上依次发射,实现与大带宽类似的测距能力,从而降低硬件调制难度。
-
更好的相位噪声特性
- 对于连续线性扫频(类似锯齿波或三角波)而言,扫频速率快且带宽大时,相位噪声和线性度会对测量精度产生不利影响。
- 步进调频可以在每个子频点保持相对稳定的频率,然后再跳至下一个子频点,能使雷达在每个窄带上获得相对更纯净、稳定的信号,相位噪声更可控。
-
可灵活配置测距和速度分辨能力
- 通过调整步进大小( Δ f \Delta f Δf)、步进数( N N N)和发射时长( T s T_s Ts)等参数,可以在一定程度上灵活地权衡测距分辨率、速度分辨率、扫描时间和探测距离。
-
数据可重复利用,便于做多子频段处理
- 分段采集的数据可以在后端被灵活处理,比如在多个子频段上做目标识别、目标分类等,因为每个子频段的散射特性可能不同,可以帮助提升对目标材质、形状等的判定。
-
不易被截获/更易隐藏
- 若配合伪随机跳频策略(类似跳频雷达),则不易被敌方或外部系统截获、干扰;同时也可降低电磁环境下的相互干扰。
-
稳健的抗干扰能力
- 分段频率发射的方式,可在受到某些带限干扰时,通过避开或重新分配频段来提升抗干扰能力。
4. SFMCW雷达的主要劣势
-
测量时间长,实时性较差
- SFMCW需要在一组步进频率(多达几十、几百,甚至更多)上依次发射并接收,完成一次完整的扫描所需时间更长。 对于高速运动目标,若在这段时间内目标位置发生了明显变化,会引入距离和相位测量误差,也会使得雷达的实时性下降。
-
对运动目标产生的相位误差更敏感
- 当目标在步进过程中移动,不同步进频点获得的目标相位彼此不再对应同一个位置,这将导致合成距离像出现畸变,甚至无法正确聚焦。需要更复杂的运动补偿算法。
-
硬件切换或稳频时间
- 每跳到一个新的频率点时,系统需要一定的稳频时间(settling time),使本振达到所需精度,否则相位信息易受影响;这无形中又增加了测量总时间。
-
系统设计较复杂
- 虽然单个子带上发射和接收较简单,但从系统整体来看,依然需要高精度的相位同步与频率控制。若步进数多,则数据处理量和系统时序管理较复杂。
-
速度模糊、速度分辨率受到影响
- 在FMCW中,通过差拍频率可比较直接地测出速度(多普勒),而SFMCW中多普勒信息更多体现在各步进信号采集到的相位差变化上; 如果步进间隔过大、采样时间过长,对高速目标产生的相位混叠问题会加剧,从而带来速度模糊或速度分辨率下降。
-
系统同步与校准要求较高
- 为了在多个频点上准确合成宽带,系统需要严格保证各步进的相位连续性(或可测量)和时钟同步。如果在多步进之间有相位随机跳变或抖动,则对后端成像、测距精度均有不利影响。
5. 对比小结
优点 | 缺点 |
---|---|
硬件实现相对容易:低瞬时带宽;较低瞬时采样速率 | 测量时间长:需要多步进,实时性受限 |
相位噪声可控:每步进频段相对稳定 | 运动补偿复杂:目标在步进过程中移动会使数据不一致 |
抗干扰性好:可分段、跳频 | 频率切换损耗:每步进都需稳频,浪费时间 |
灵活配置:可调步进数、步进大小 | 系统设计复杂:要求严格的相位同步、硬件切换管理 |
可用作多子带特征提取 | 速度分辨率/模糊问题:对高速运动目标的多普勒处理更困难 |
6. 进一步思考
- 在远距离探测场景下,SFMCW可以采用较小的带宽分段去做探测,依然能获得一定的分辨率。
- 在高速目标测量场景中,若需要同时兼顾较高距离分辨率和高速目标探测,可能需要在SFMCW的步进过程中添加额外的多普勒估计算法,或者在每个步进子带上进行更快速的短脉冲或小调制扩展来获取速度信息。
- 在毫米波/太赫兹频段,高质量大带宽的VCO/PLL的研发成本非常高,而SFMCW的分段式扫描可以降低对瞬时带宽的要求,并增强对噪声和线性度的控制。
7. 结语
总体而言,步进调频连续波(SFMCW)雷达通过对目标的多频点采样实现宽带测距和成像,能够在硬件实现、相位噪声、抗干扰等方面表现出独特的优势。然而,其在实时性、对运动目标的敏感程度,以及系统设计的复杂性等方面也存在一定的劣势。如何根据应用需求(测距精度、目标速度范围、体积成本、环境干扰等因素)选择合适的调制体制,是雷达工程师需要平衡和考量的重要问题。