正交与过完备基:从经典展开到压缩感知
在现代信号处理和数据分析中,基底选择决定了我们如何理解和处理信息。正交基展开提供了唯一、高效的信号表示方式,而压缩感知中的过完备非正交基则通过冗余性实现了稀疏表示能力。
完全正交基的数学基础
完全正交基集合构成了经典信号分析的数学基石。在 Hilbert 空间 H H H 中,一组向量 v 1 , v 2 , . . . , v n {v₁, v₂, ..., vₙ} v1,v2,...,vn 称为正交集,当且仅当内积满足:
⟨ v i , v j ⟩ = { 0 if i ≠ j ∥ v i ∥ 2 if i = j \langle v_i, v_j \rangle = \begin{cases} 0 & \text{if } i \neq j \\ \|v_i\|^2 & \text{if } i = j \end{cases} ⟨vi,vj⟩={0∥vi∥2if i=jif i=j
当每个向量都归一化为单位长度时,我们得到正交标准基: ⟨ v i , v j ⟩ = δ i j ⟨vᵢ, vⱼ⟩ = δᵢⱼ ⟨vi,vj⟩=δij,其中 δ i j δᵢⱼ δij 是 Kronecker delta 函数。对于连续函数空间,正交条件表示为:
∫ a b ϕ m ( x ) ϕ n ( x ) w ( x ) d x = δ m n N n \int_a^b \phi_m(x) \phi_n(x) w(x) dx = \delta_{mn} N_n ∫abϕm(x)ϕn(x)w(x)dx=δmnNn
其中 w ( x ) w(x) w(x) 是权函数, N n Nₙ Nn 是归一化常数。
完备性的严格数学定义基于 Bessel 不等式和 Parseval 等式。对于正交函数系 φ n ( x ) {φₙ(x)} φn(x),Bessel 不等式保证:
∑ n = 0 ∞ ∣ ⟨ f , ϕ n ⟩ ∣ 2 ∥ ϕ n ∥ 2 ≤ ∥ f ∥ 2 \sum_{n=0}^{\infty} \frac{|\langle f, \phi_n \rangle|^2}{\|\phi_n\|^2} \leq \|f\|^2 n=0∑∞∥ϕn∥2∣⟨f,ϕn⟩∣2≤∥f∥2
当等号成立时,该函数系是完备的。完备性的等价条件是:对于 L 2 [ a , b ] L²[a,b] L2[a,b] 中的任意函数 f ( x ) f(x) f(x),有
lim N → ∞ ∫ a b ∣ f ( x ) − ∑ n = 0 N c n ϕ n ( x ) ∣ 2 w ( x ) d x = 0 \lim_{N \to \infty} \int_a^b \left|f(x) - \sum_{n=0}^N c_n \phi_n(x)\right|^2 w(x) dx = 0 N→∞lim∫ab f(x)−n=0∑Ncnϕn(x) 2w(x)dx=0
其中 c n = ⟨ f , φ n ⟩ / ‖ φ n ‖ 2 cₙ = ⟨f, φₙ⟩/‖φₙ‖² cn=⟨f,φn⟩/‖φn‖2。
正交性的数学威力体现在系数计算的简洁性。考虑展开式 f ( x ) = Σ n = 0 ∞ c n φ n ( x ) f(x) = Σₙ₌₀^∞ cₙφₙ(x) f(x)=Σn=0∞cnφn(x),对两边与 φ j ( x ) φⱼ(x) φj(x) 做内积:
⟨ f , ϕ j ⟩ = ⟨ ∑ n = 0 ∞ c n ϕ n , ϕ j ⟩ = ∑ n = 0 ∞ c n ⟨ ϕ n , ϕ j ⟩ = c j ∥ ϕ j ∥ 2 \langle f, \phi_j \rangle = \left\langle \sum_{n=0}^{\infty} c_n \phi_n, \phi_j \right\rangle = \sum_{n=0}^{\infty} c_n \langle \phi_n, \phi_j \rangle = c_j \|\phi_j\|^2 ⟨f,ϕj⟩=⟨n=0∑∞cnϕn,ϕj⟩=n=0∑∞cn⟨ϕn,ϕj⟩=cj∥ϕj∥2
因此 c j = ⟨ f , φ j ⟩ / ‖ φ j ‖ 2 cⱼ = ⟨f, φⱼ⟩/‖φⱼ‖² cj=⟨f,φj⟩/‖φj‖2,这个结果独立于其他系数,体现了正交分解的优雅性。
Parseval定理的完整形式为:
∑ k = 0 ∞ ∣ c k ∣ 2 ∥ ϕ k ∥ 2 = ∫ a b ∣ f ( x ) ∣ 2 w ( x ) d x \sum_{k=0}^{\infty} |c_k|^2 \|\phi_k\|^2 = \int_a^b |f(x)|^2 w(x) dx k=0∑∞∣ck∣2∥ϕk∥2=∫ab∣f(x)∣2w(x)dx
这个恒等式不仅保证了能量守恒,还提供了收敛性判据。对于归一化正交基,Parseval定理简化为:
∥ f ∥ 2 = ∑ k = 0 ∞ ∣ c k ∣ 2 \|f\|^2 = \sum_{k=0}^{\infty} |c_k|^2 ∥f∥2=k=0∑∞∣ck∣2
这表明信号在时域和变换域的能量完全相等,是线性变换保持内积结构的直接结果。从泛函分析角度,这反映了正交变换是酉变换(unitary transformation)的特性: U ∗ U = U U ∗ = I U*U = UU* = I U∗U=UU∗=I。
正交基展开的经典实例
傅里叶基是最著名的正交基系统。复指数函数集 e ( i n ω 0 t ) {e^(inω₀t)} e(inω0t) 在周期 T = 2 π / ω 0 T = 2π/ω₀ T=2π/ω0 上构成完备正交基,满足正交条件:
∫ 0 T e i n ω 0 t e − i m ω 0 t d t = ∫ 0 T e i ( n − m ) ω 0 t d t = { T if n = m 0 if n ≠ m \int_0^T e^{inω_0t} e^{-imω_0t} dt = \int_0^T e^{i(n-m)ω_0t} dt = \begin{cases} T & \text{if } n = m \\ 0 & \text{if } n \neq m \end{cases} ∫0Teinω0te−imω0tdt=∫0Tei(n−m)ω0tdt={T0if n=mif n=m
任何周期函数都可以展开为傅里叶级数:
f ( t ) = ∑ n = − ∞ ∞ c n e i n ω 0 t f(t) = \sum_{n=-\infty}^{\infty} c_n e^{inω_0t} f(t)=n=−∞∑∞cneinω0t
其中系数通过正交性计算:
c n = 1 T ∫ 0 T f ( t ) e − i n ω 0 t d t c_n = \frac{1}{T} \int_0^T f(t) e^{-inω_0t} dt cn=T1∫0Tf(t)e−inω0tdt
傅里叶变换的卷积定理展示了正交基的深层数学结构。若 F [ f ( t ) ] = F ( ω ) F[f(t)] = F(ω) F[f(t)]=F(ω) 和 F [ g ( t ) ] = G ( ω ) F[g(t)] = G(ω) F[g(t)]=G(ω),则:
F [ f ∗ g ] = F ( ω ) ⋅ G ( ω ) F[f * g] = F(ω) \cdot G(ω) F[f∗g]=F(ω)⋅G(ω)
这个性质的证明利用了复指数的正交性:
∫ − ∞ ∞ e i ( ω − ω ′ ) t d t = 2 π δ ( ω − ω ′ ) \int_{-\infty}^{\infty} e^{i(ω-ω')t} dt = 2π\delta(ω - ω') ∫−∞∞ei(ω−ω′)tdt=2πδ(ω−ω′)
小波基提供了时频局域化的多分辨率分析。从尺度函数 φ ( t ) φ(t) φ(t) 和母小波 ψ ( t ) ψ(t) ψ(t) 出发,构造正交小波基:
ϕ
j
,
k
(
t
)
=
2
j
/
2
ϕ
(
2
j
t
−
k
)
\phi_{j,k}(t) = 2^{j/2} \phi(2^j t - k)
ϕj,k(t)=2j/2ϕ(2jt−k)
ψ
j
,
k
(
t
)
=
2
j
/
2
ψ
(
2
j
t
−
k
)
\psi_{j,k}(t) = 2^{j/2} \psi(2^j t - k)
ψj,k(t)=2j/2ψ(2jt−k)
这些函数满足双正交关系:
⟨
ϕ
j
,
k
,
ϕ
j
′
,
k
′
⟩
=
δ
j
,
j
′
δ
k
,
k
′
\langle \phi_{j,k}, \phi_{j',k'} \rangle = \delta_{j,j'} \delta_{k,k'}
⟨ϕj,k,ϕj′,k′⟩=δj,j′δk,k′
⟨
ψ
j
,
k
,
ψ
j
′
,
k
′
⟩
=
δ
j
,
j
′
δ
k
,
k
′
\langle \psi_{j,k}, \psi_{j',k'} \rangle = \delta_{j,j'} \delta_{k,k'}
⟨ψj,k,ψj′,k′⟩=δj,j′δk,k′
⟨
ϕ
j
,
k
,
ψ
j
′
,
k
′
⟩
=
0
\langle \phi_{j,k}, \psi_{j',k'} \rangle = 0
⟨ϕj,k,ψj′,k′⟩=0
多分辨率分析的核心是尺度方程(细化方程):
ϕ ( t ) = 2 ∑ k h k ϕ ( 2 t − k ) \phi(t) = \sqrt{2} \sum_{k} h_k \phi(2t - k) ϕ(t)=2k∑hkϕ(2t−k)
其中 h k {hₖ} hk 是低通滤波器系数,满足归一化条件 Σ k h k = √ 2 Σₖhₖ = √2 Σkhk=√2。小波函数与高通滤波器的关系为:
ψ ( t ) = 2 ∑ k g k ϕ ( 2 t − k ) \psi(t) = \sqrt{2} \sum_{k} g_k \phi(2t - k) ψ(t)=2k∑gkϕ(2t−k)
其中 g k = ( − 1 ) k h 1 − k gₖ = (-1)ᵏh₁₋ₖ gk=(−1)kh1−k,保证了小波的正交性。
Legendre多项式通过递推关系生成,展示了正交多项式的代数结构:
( n + 1 ) P n + 1 ( x ) = ( 2 n + 1 ) x P n ( x ) − n P n − 1 ( x ) (n+1)P_{n+1}(x) = (2n+1)x P_n(x) - n P_{n-1}(x) (n+1)Pn+1(x)=(2n+1)xPn(x)−nPn−1(x)
起始条件为 P 0 ( x ) = 1 , P 1 ( x ) = x P₀(x) = 1, P₁(x) = x P0(x)=1,P1(x)=x。这些多项式在 [ − 1 , 1 ] [-1,1] [−1,1] 上关于权函数 w ( x ) = 1 w(x) = 1 w(x)=1 正交:
∫ − 1 1 P m ( x ) P n ( x ) d x = 2 2 n + 1 δ m n \int_{-1}^1 P_m(x) P_n(x) dx = \frac{2}{2n+1} \delta_{mn} ∫−11Pm(x)Pn(x)dx=2n+12δmn
Legendre多项式的生成函数为:
1 1 − 2 x t + t 2 = ∑ n = 0 ∞ P n ( x ) t n \frac{1}{\sqrt{1 - 2xt + t^2}} = \sum_{n=0}^{\infty} P_n(x) t^n 1−2xt+t21=n=0∑∞Pn(x)tn
这个生成函数揭示了 Legendre 多项式与物理中的势函数展开的深刻联系。
Rodrigues公式提供了 Legendre 多项式的显式表达:
P n ( x ) = 1 2 n n ! d n d x n ( x 2 − 1 ) n P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n}(x^2 - 1)^n Pn(x)=2nn!1dxndn(x2−1)n
这个公式连接了多项式理论和微分算子,体现了正交多项式的深层数学结构。
过完备非正交基的数学框架
过完备字典从根本上改变了信号表示的范式。在 R n ℝⁿ Rn 中,字典 D = [ d 1 , d 2 , . . . , d p ] ∈ R n x p D = [d₁, d₂, ..., dₚ] ∈ ℝⁿˣᵖ D=[d1,d2,...,dp]∈Rnxp 称为过完备的,当 p > n p > n p>n,即原子(列向量)的数量超过了空间的维数。冗余因子 r = p / n > 1 r = p/n > 1 r=p/n>1 度量了字典的过完备程度。过完备字典的基本性质可通过框架理论(frame theory)严格描述。字典 D D D 构成框架,当且仅当存在常数 0 < A ≤ B < ∞ 0 < A ≤ B < ∞ 0<A≤B<∞,使得对所有 x ∈ R n x ∈ ℝⁿ x∈Rn 有:
A ∥ x ∥ 2 ≤ ∑ i = 1 p ∣ ⟨ x , d i ⟩ ∣ 2 ≤ B ∥ x ∥ 2 A\|x\|^2 \leq \sum_{i=1}^p |\langle x, d_i \rangle|^2 \leq B\|x\|^2 A∥x∥2≤i=1∑p∣⟨x,di⟩∣2≤B∥x∥2
常数 A A A 和 B B B 分别称为下界和上界框架常数。当 A = B A = B A=B 时,称为紧框架。
过完备表示的非唯一性导致了稀疏优化问题。给定观测 y = Φ x y = Φx y=Φx,其中 Φ ∈ R m x n ( m < n ) Φ ∈ ℝᵐˣⁿ (m < n) Φ∈Rmxn(m<n),我们寻求最稀疏的解:
min ∥ x ∥ 0 subject to y = Φ x \min \|x\|_0 \quad \text{subject to} \quad y = \Phi x min∥x∥0subject toy=Φx
这是一个组合优化问题,具有 ℓ 0 ℓ₀ ℓ0 “伪范数”:
∥ x ∥ 0 = ∣ { i : x i ≠ 0 } ∣ \|x\|_0 = |\{i : x_i \neq 0\}| ∥x∥0=∣{i:xi=0}∣
由于 ℓ 0 ℓ₀ ℓ0 最小化是 NP-难问题,通常使用 ℓ 1 ℓ₁ ℓ1 松弛:
min x ∥ x ∥ 1 subject to y = Φ x \min_{x}\; \|x\|_1 \quad \text{subject to}\quad y = \Phi x xmin∥x∥1subject toy=Φx
其中 ‖ x ‖ 1 = Σ i ∣ x i ∣ ‖x‖₁ = Σᵢ|xᵢ| ‖x‖1=Σi∣xi∣ 是 ℓ 1 ℓ₁ ℓ1 范数。
限制等距性质(RIP) 为稀疏恢复提供了理论基础。矩阵 Φ Φ Φ 满足 k-RIP,如果存在 δ k ∈ ( 0 , 1 ) δₖ ∈ (0,1) δk∈(0,1) 使得:
( 1 − δ k ) ∥ x ∥ 2 2 ≤ ∥ Φ x ∥ 2 2 ≤ ( 1 + δ k ) ∥ x ∥ 2 2 (1 - \delta_k)\|x\|_2^2 \leq \|\Phi x\|_2^2 \leq (1 + \delta_k)\|x\|_2^2 (1−δk)∥x∥22≤∥Φx∥22≤(1+δk)∥x∥22
对所有 k k k-稀疏向量 x x x 成立。RIP 常数定义为:
δ k = min { δ : ( 1 − δ ) ∥ x ∥ 2 2 ≤ ∥ Φ x ∥ 2 2 ≤ ( 1 + δ ) ∥ x ∥ 2 2 } \delta_k = \min\{\delta : (1-\delta)\|x\|_2^2 \leq \|\Phi x\|_2^2 \leq (1+\delta)\|x\|_2^2\} δk=min{δ:(1−δ)∥x∥22≤∥Φx∥22≤(1+δ)∥x∥22}
Candès-Tao 定理建立了精确恢复的充分条件:如果 Φ Φ Φ 满足 δ 2 k < √ 2 − 1 ≈ 0.414 δ₂ₖ < √2 - 1 ≈ 0.414 δ2k<√2−1≈0.414,那么每个 k k k-稀疏信号都可以通过 ℓ 1 ℓ₁ ℓ1 最小化精确恢复。
互相干性(mutual coherence)提供了另一个重要的分析工具。对于归一化字典 D D D,互相干性定义为:
μ ( D ) = max 1 ≤ i < j ≤ p ∣ ⟨ d i , d j ⟩ ∣ \mu(D) = \max_{1 \leq i < j \leq p} |\langle d_i, d_j \rangle| μ(D)=1≤i<j≤pmax∣⟨di,dj⟩∣
Welch下界给出了互相干性的理论下限:
μ ( D ) ≥ p − n n ( p − 1 ) \mu(D) \geq \sqrt{\frac{p-n}{n(p-1)}} μ(D)≥n(p−1)p−n
当 p > > n p >> n p>>n 时,下界近似为 μ ( D ) ≥ 1 / √ n μ(D) ≥ 1/√n μ(D)≥1/√n。
基于互相干性的恢复定理:如果稀疏度满足 ‖ x ‖ 0 < ( 1 + 1 / μ ( D ) ) / 2 ‖x‖₀ < (1 + 1/μ(D))/2 ‖x‖0<(1+1/μ(D))/2,则 x x x 是 ℓ 1 ℓ₁ ℓ1 最小化的唯一解。这个条件虽然比 RIP 更保守,但便于验证。
Null Space Property (NSP) 提供了 ℓ 1 ℓ₁ ℓ1 恢复的必要充分条件。矩阵 Φ Φ Φ 满足 k k k-阶 NSP,如果对于 Φ Φ Φ 的零空间中的任意非零向量 η η η,有:
∥ η S ∥ 1 < ∥ η S c ∥ 1 \|\eta_S\|_1 < \|\eta_{S^c}\|_1 ∥ηS∥1<∥ηSc∥1
其中 S 是任意大小为 k 的索引集,ηₛ 表示 η 在 S 上的限制。
稀疏信号的可恢复性还与测量矩阵的谱性质密切相关。Johnson-Lindenstrauss 引理保证:对于任意 ε ∈ ( 0 , 1 ) ε ∈ (0,1) ε∈(0,1),如果
m ≥ O ( log N ε 2 ) m \geq O\left(\frac{\log N}{\varepsilon^2}\right) m≥O(ε2logN)
则存在线性映射 f : R N → R m f: ℝᴺ → ℝᵐ f:RN→Rm,使得对所有 x x x 有:
( 1 − ε ) ∥ x ∥ 2 ≤ ∥ f ( x ) ∥ 2 ≤ ( 1 + ε ) ∥ x ∥ 2 (1-\varepsilon)\|x\|^2 \leq \|f(x)\|^2 \leq (1+\varepsilon)\|x\|^2 (1−ε)∥x∥2≤∥f(x)∥2≤(1+ε)∥x∥2
这为压缩感知中随机测量矩阵的设计提供了理论指导。
压缩感知中的恢复算法
基追踪(Basis Pursuit)通过求解凸优化问题实现稀疏恢复。标准基追踪问题表述为:
min x ∥ x ∥ 1 subject to A x = b \min_x \|x\|_1 \quad \text{subject to} \quad Ax = b xmin∥x∥1subject toAx=b
当存在噪声时,问题转化为基追踪去噪(BPDN):
min x ∥ x ∥ 1 subject to ∥ A x − b ∥ 2 ≤ ε \min_x \|x\|_1 \quad \text{subject to} \quad \|Ax - b\|_2 \leq \varepsilon xmin∥x∥1subject to∥Ax−b∥2≤ε
或其 Lagrangian 形式:
min x 1 2 ∥ A x − b ∥ 2 2 + λ ∥ x ∥ 1 \min_x \frac{1}{2}\|Ax - b\|_2^2 + \lambda\|x\|_1 xmin21∥Ax−b∥22+λ∥x∥1
这个问题可以通过内点法求解,其对偶问题为:
max u b T u subject to ∥ A T u ∥ ∞ ≤ 1 \max_{u} b^T u \quad \text{subject to} \quad \|A^T u\|_{\infty} \leq 1 umaxbTusubject to∥ATu∥∞≤1
KKT(Karush-Kuhn-Tucker)条件给出了最优解的特征。设 x ∗ x* x∗ 是 BPDN 的最优解,则存在对偶变量 u ∗ u* u∗,使得:
A T u ∗ + λ z ∗ = 0 A^T u^* + \lambda z^* = 0 ATu∗+λz∗=0
其中 z ∗ ∈ ∂ ‖ x ∗ ‖ 1 z* ∈ ∂‖x*‖₁ z∗∈∂‖x∗‖1 是 ℓ 1 ℓ₁ ℓ1 范数的次梯度:
z i ∗ = { sign ( x i ∗ ) if x i ∗ ≠ 0 [ − 1 , 1 ] if x i ∗ = 0 z_i^* = \begin{cases} \text{sign}(x_i^*) & \text{if } x_i^* \neq 0 \\ [-1, 1] & \text{if } x_i^* = 0 \end{cases} zi∗={sign(xi∗)[−1,1]if xi∗=0if xi∗=0
正交匹配追踪(OMP) 采用贪婪策略构建稀疏表示。算法的核心步骤包括:
- 残差初始化:
r 0 = y , Λ 0 = ∅ r₀ = y, Λ₀ = ∅ r0=y,Λ0=∅ - 原子选择:
j k = arg max j ∉ Λ k − 1 ∣ ⟨ r k − 1 , ϕ j ⟩ ∣ j_k = \arg\max_{j \notin \Lambda_{k-1}} |\langle r_{k-1}, \phi_j \rangle| jk=argj∈/Λk−1max∣⟨rk−1,ϕj⟩∣ - 支撑集更新: Λ k = Λ k − 1 ∪ j k Λₖ = Λₖ₋₁ ∪ {jₖ} Λk=Λk−1∪jk
- 最小二乘解:
x Λ k = arg min ∥ y − Φ Λ k x ∥ 2 2 x_{\Lambda_k} = \arg\min \|y - \Phi_{\Lambda_k} x\|_2^2 xΛk=argmin∥y−ΦΛkx∥22 - 残差更新:
r k = y − Φ Λ k x Λ k r_k = y - \Phi_{\Lambda_k} x_{\Lambda_k} rk=y−ΦΛkxΛk
O M P OMP OMP 的收敛性可通过残差能量的单调递减性质证明:
∥ r k ∥ 2 2 = ∥ r k − 1 ∥ 2 2 − ∣ ⟨ r k − 1 , ϕ j k ⟩ ∣ 2 ∥ ϕ j k ∥ 2 2 \|r_k\|_2^2 = \|r_{k-1}\|_2^2 - \frac{|\langle r_{k-1}, \phi_{j_k} \rangle|^2}{\|\phi_{j_k}\|_2^2} ∥rk∥22=∥rk−1∥22−∥ϕjk∥22∣⟨rk−1,ϕjk⟩∣2
这保证了 ‖ r k ‖ 2 2 ≤ ‖ r k − 1 ‖ 2 2 ‖rₖ‖₂² ≤ ‖rₖ₋₁‖₂² ‖rk‖22≤‖rk−1‖22,算法单调收敛。
O M P OMP OMP 的恢复保证与互相干性直接相关。如果真实信号的稀疏度满足:
∥ x ∗ ∥ 0 < 1 2 ( 1 + 1 μ ) \|x^*\|_0 < \frac{1}{2}\left(1 + \frac{1}{\mu}\right) ∥x∗∥0<21(1+μ1)
则 O M P OMP OMP 能在 ‖ x ∗ ‖ 0 ‖x*‖₀ ‖x∗‖0 步内精确恢复 x ∗ x* x∗。
匹配追踪(MP) 是 O M P OMP OMP 的简化版本,省略了正交化步骤。 M P MP MP 的原子选择策略相同,但系数更新采用简单的梯度下降:
x j k ( k ) = x j k ( k − 1 ) + ⟨ r k − 1 , ϕ j k ⟩ x_{j_k}^{(k)} = x_{j_k}^{(k-1)} + \langle r_{k-1}, \phi_{j_k} \rangle xjk(k)=xjk(k−1)+⟨rk−1,ϕjk⟩
M P MP MP 的收敛速度可通过以下不等式估计:
∥ r k ∥ 2 2 ≤ ( 1 − μ 2 ) k ∥ y ∥ 2 2 \|r_k\|_2^2 \leq \left(1 - \mu^2\right)^k \|y\|_2^2 ∥rk∥22≤(1−μ2)k∥y∥22
其中 μ μ μ 是字典的相干性。这表明 M P MP MP 以指数速度收敛,但比 O M P OMP OMP 慢。
压缩采样匹配追踪(CoSaMP) 结合了贪婪选择和全局优化:
-
支撑集估计:
Ω = supp ( HT 2 s ( Φ T r ) ) \Omega = \text{supp}(\text{HT}_{2s}(\Phi^T r)) Ω=supp(HT2s(ΦTr))
其中 H T k ( ⋅ ) HT_k(·) HTk(⋅) 是硬阈值算子,保留 k k k 个最大分量。 -
最小二乘求解:
b ∣ T = arg min ∥ y − Φ T b ∥ 2 2 b|_T = \arg\min \|y - \Phi_T b\|_2^2 b∣T=argmin∥y−ΦTb∥22 -
稀疏化:
x n e w = HT s ( b ) x^{new} = \text{HT}_s(b) xnew=HTs(b)
CoSaMP 的恢复保证为:如果 Φ Φ Φ 满足 RIP 条件 δ 3 s < 0.1 δ₃ₛ < 0.1 δ3s<0.1,则算法线性收敛:
∥ x ( k ) − x ∗ ∥ 2 ≤ ρ k ∥ x ( 0 ) − x ∗ ∥ 2 + τ σ s ( x ∗ ) 1 \|x^{(k)} - x^*\|_2 \leq \rho^k \|x^{(0)} - x^*\|_2 + \tau \sigma_s(x^*)_1 ∥x(k)−x∗∥2≤ρk∥x(0)−x∗∥2+τσs(x∗)1
其中 ρ < 1 ρ < 1 ρ<1 是收敛因子, σ s ( x ∗ ) 1 σₛ(x*)₁ σs(x∗)1 表示 x ∗ x* x∗ 的最佳 s s s-项逼近误差。
**迭代软阈值算法(ISTA)**通过迭代软阈值实现 ℓ 1 ℓ₁ ℓ1 最小化:
x ( k + 1 ) = S λ / L ( x ( k ) − 1 L Φ T ( Φ x ( k ) − y ) ) x^{(k+1)} = S_{\lambda/L}(x^{(k)} - \frac{1}{L}\Phi^T(\Phi x^{(k)} - y)) x(k+1)=Sλ/L(x(k)−L1ΦT(Φx(k)−y))
其中 L L L 是 Φ T Φ Φᵀ Φ ΦTΦ 的最大特征值,软阈值算子定义为:
S τ ( z ) = sign ( z ) max ( ∣ z ∣ − τ , 0 ) S_\tau(z) = \text{sign}(z) \max(|z| - \tau, 0) Sτ(z)=sign(z)max(∣z∣−τ,0)
ISTA 的收敛率为 O ( 1 / k ) O(1/k) O(1/k),而其加速版本 FISTA 达到最优的 O ( 1 / k 2 ) O(1/k²) O(1/k2) 收敛率。
两种基底系统的本质区别
正交基和过完备基的根本区别源于线性代数的基本理论。在 n n n 维向量空间中,正交基恰好包含 n n n 个线性无关的向量,构成空间的一组基底。给定信号 x ∈ R n x ∈ ℝⁿ x∈Rn 和正交标准基 φ i i = 1 n {φᵢ}ᵢ₌₁ⁿ φii=1n,表示系数唯一确定:
x = ∑ i = 1 n ⟨ x , ϕ i ⟩ ϕ i x = \sum_{i=1}^n \langle x, \phi_i \rangle \phi_i x=i=1∑n⟨x,ϕi⟩ϕi
这种唯一性保证了变换的可逆性: x = U T U x x = UᵀUx x=UTUx,其中 U U U 是正交矩阵,满足 U T U = U U T = I UᵀU = UUᵀ = I UTU=UUT=I。
过完备基则突破了维数限制。字典 D = [ d 1 , d 2 , . . . , d p ] ∈ R n x p D = [d₁, d₂, ..., dₚ] ∈ ℝⁿˣᵖ D=[d1,d2,...,dp]∈Rnxp 在 p > n p > n p>n 时构成过完备表示。信号的表示变为欠定方程组:
x = D α x = D\alpha x=Dα
当 r a n k ( D ) = n rank(D) = n rank(D)=n 时,解空间是 ( p − n ) (p-n) (p−n) 维的仿射子空间:
{ α : D α = x } = α 0 + null ( D ) \{\alpha : D\alpha = x\} = \alpha_0 + \text{null}(D) {α:Dα=x}=α0+null(D)
其中 α 0 α₀ α0 是特解, n u l l ( D ) null(D) null(D) 是 D D D 的零空间。
计算复杂度的数学分析揭示了两种方法的根本差异。正交变换的分析复杂度为:
- 直接计算: O ( n 2 ) O(n²) O(n2) 次乘法运算
- 快速算法(FFT/FWT): O ( n l o g n ) O(n log n) O(nlogn) 次运算
- 存储需求: O ( n ) O(n) O(n) 个系数
过完备方法的复杂度取决于求解策略:
- ℓ 1 ℓ₁ ℓ1 最小化(内点法): O ( p 3 ) O(p³) O(p3) 至 O ( p 3.5 ) O(p^{3.5}) O(p3.5) 次运算
- OMP: O ( k n p ) O(knp) O(knp) 次运算,其中 k k k 是稀疏度
- 存储需求: O ( k + p × n ) O(k + p×n) O(k+p×n) 个参数
稀疏性与逼近误差的权衡体现了两种方法的本质差异。对于正交基展开:
∥ x − x N ∥ 2 2 = ∑ i = N + 1 ∞ ∣ ⟨ x , ϕ i ⟩ ∣ 2 \|x - x_N\|_2^2 = \sum_{i=N+1}^{\infty} |\langle x, \phi_i \rangle|^2 ∥x−xN∥22=i=N+1∑∞∣⟨x,ϕi⟩∣2
其中 x n xₙ xn 是 N N N 项截断。逼近误差直接依赖于系数的衰减速度。
过完备表示的逼近误差更加复杂。设 x x x 的 k k k-稀疏逼近为 x ^ x̂ x^,则:
∥ x − x ^ ∥ 2 ≤ C σ k ( x ) 1 k \|x - \hat{x}\|_2 \leq C \frac{\sigma_k(x)_1}{\sqrt{k}} ∥x−x^∥2≤Ckσk(x)1
其中 σ k ( x ) 1 σₖ(x)₁ σk(x)1 是 x x x 的最佳 k k k-项逼近的 ℓ 1 ℓ₁ ℓ1 误差, C C C 是依赖于字典性质的常数。
Riesz 基理论为两种方法提供了统一的数学框架。序列 x i i = 1 ∞ {xᵢ}ᵢ₌₁^∞ xii=1∞ 构成 Riesz 基,如果存在常数 0 < A ≤ B < ∞ 0 < A ≤ B < ∞ 0<A≤B<∞,使得:
A ∑ i = 1 ∞ ∣ c i ∣ 2 ≤ ∥ ∑ i = 1 ∞ c i x i ∥ 2 ≤ B ∑ i = 1 ∞ ∣ c i ∣ 2 A \sum_{i=1}^{\infty} |c_i|^2 \leq \left\|\sum_{i=1}^{\infty} c_i x_i\right\|^2 \leq B \sum_{i=1}^{\infty} |c_i|^2 Ai=1∑∞∣ci∣2≤ i=1∑∞cixi 2≤Bi=1∑∞∣ci∣2
对所有有限序列 c i {cᵢ} ci 成立。当 A = B = 1 A = B = 1 A=B=1 时,Riesz 基退化为正交基。
条件数分析揭示了数值稳定性的差异。正交矩阵的条件数恒为 1:
κ ( U ) = σ max ( U ) σ min ( U ) = 1 \kappa(U) = \frac{\sigma_{\max}(U)}{\sigma_{\min}(U)} = 1 κ(U)=σmin(U)σmax(U)=1
过完备字典的条件数通常远大于 1。对于框架 D D D,条件数为:
κ ( D ) = B A \kappa(D) = \sqrt{\frac{B}{A}} κ(D)=AB
其中 A , B A, B A,B 是框架常数。大的条件数意味着对噪声的敏感性增加。
信息论观点进一步阐明了差异。正交变换保持信息量:
I ( x ) = I ( U x ) = − ∑ i = 1 n p i log p i I(x) = I(Ux) = -\sum_{i=1}^n p_i \log p_i I(x)=I(Ux)=−i=1∑npilogpi
其中 p i pᵢ pi 是概率分布。过完备表示则可能增加信息冗余度:
R = p n − 1 R = \frac{p}{n} - 1 R=np−1
这种冗余度使得系统对部分信息丢失具有鲁棒性。
稳定性分析通过扰动理论比较两种方法。对于正交基,系数扰动与信号扰动同尺度:
∥ δ c ∥ 2 = ∥ δ x ∥ 2 \|\delta c\|_2 = \|\delta x\|_2 ∥δc∥2=∥δx∥2
过完备情况下,扰动放大取决于字典的条件数:
∥ δ α ∥ 2 ≤ κ ( D ) ∥ δ x ∥ 2 \|\delta \alpha\|_2 \leq \kappa(D) \|\delta x\|_2 ∥δα∥2≤κ(D)∥δx∥2
这表明过完备方法在噪声环境下可能表现不稳定,需要正则化技术来改善性能。
量子力学中的不确定性原理为两种方法提供了物理直觉。时域和频域的同时精确测量受到基本限制:
Δ t ⋅ Δ ω ≥ 1 2 \Delta t \cdot \Delta \omega \geq \frac{1}{2} Δt⋅Δω≥21
正交基(如傅里叶基)在频域极度精确,但时域分辨率为零。小波等过完备系统通过牺牲正交性获得了时频折衷,体现了测不准原理在信号处理中的表现。