正交与过完备基:从经典展开到压缩感知

正交与过完备基:从经典展开到压缩感知

在现代信号处理和数据分析中,基底选择决定了我们如何理解和处理信息。正交基展开提供了唯一、高效的信号表示方式,而压缩感知中的过完备非正交基则通过冗余性实现了稀疏表示能力

完全正交基的数学基础

完全正交基集合构成了经典信号分析的数学基石。在 Hilbert 空间 H H H 中,一组向量 v 1 , v 2 , . . . , v n {v₁, v₂, ..., vₙ} v1,v2,...,vn 称为正交集,当且仅当内积满足:

⟨ v i , v j ⟩ = { 0 if  i ≠ j ∥ v i ∥ 2 if  i = j \langle v_i, v_j \rangle = \begin{cases} 0 & \text{if } i \neq j \\ \|v_i\|^2 & \text{if } i = j \end{cases} vi,vj={0vi2if i=jif i=j

当每个向量都归一化为单位长度时,我们得到正交标准基: ⟨ v i , v j ⟩ = δ i j ⟨vᵢ, vⱼ⟩ = δᵢⱼ vi,vj=δij,其中 δ i j δᵢⱼ δij 是 Kronecker delta 函数。对于连续函数空间,正交条件表示为:

∫ a b ϕ m ( x ) ϕ n ( x ) w ( x ) d x = δ m n N n \int_a^b \phi_m(x) \phi_n(x) w(x) dx = \delta_{mn} N_n abϕm(x)ϕn(x)w(x)dx=δmnNn

其中 w ( x ) w(x) w(x) 是权函数, N n Nₙ Nn 是归一化常数。

完备性的严格数学定义基于 Bessel 不等式和 Parseval 等式。对于正交函数系 φ n ( x ) {φₙ(x)} φn(x),Bessel 不等式保证:

∑ n = 0 ∞ ∣ ⟨ f , ϕ n ⟩ ∣ 2 ∥ ϕ n ∥ 2 ≤ ∥ f ∥ 2 \sum_{n=0}^{\infty} \frac{|\langle f, \phi_n \rangle|^2}{\|\phi_n\|^2} \leq \|f\|^2 n=0ϕn2f,ϕn2f2

当等号成立时,该函数系是完备的。完备性的等价条件是:对于 L 2 [ a , b ] L²[a,b] L2[a,b] 中的任意函数 f ( x ) f(x) f(x),有

lim ⁡ N → ∞ ∫ a b ∣ f ( x ) − ∑ n = 0 N c n ϕ n ( x ) ∣ 2 w ( x ) d x = 0 \lim_{N \to \infty} \int_a^b \left|f(x) - \sum_{n=0}^N c_n \phi_n(x)\right|^2 w(x) dx = 0 Nlimab f(x)n=0Ncnϕn(x) 2w(x)dx=0

其中 c n = ⟨ f , φ n ⟩ / ‖ φ n ‖ 2 cₙ = ⟨f, φₙ⟩/‖φₙ‖² cn=f,φn/‖φn2

正交性的数学威力体现在系数计算的简洁性。考虑展开式 f ( x ) = Σ n = 0 ∞ c n φ n ( x ) f(x) = Σₙ₌₀^∞ cₙφₙ(x) f(x)=Σn=0cnφn(x),对两边与 φ j ( x ) φⱼ(x) φj(x) 做内积:

⟨ f , ϕ j ⟩ = ⟨ ∑ n = 0 ∞ c n ϕ n , ϕ j ⟩ = ∑ n = 0 ∞ c n ⟨ ϕ n , ϕ j ⟩ = c j ∥ ϕ j ∥ 2 \langle f, \phi_j \rangle = \left\langle \sum_{n=0}^{\infty} c_n \phi_n, \phi_j \right\rangle = \sum_{n=0}^{\infty} c_n \langle \phi_n, \phi_j \rangle = c_j \|\phi_j\|^2 f,ϕj=n=0cnϕn,ϕj=n=0cnϕn,ϕj=cjϕj2

因此 c j = ⟨ f , φ j ⟩ / ‖ φ j ‖ 2 cⱼ = ⟨f, φⱼ⟩/‖φⱼ‖² cj=f,φj/‖φj2,这个结果独立于其他系数,体现了正交分解的优雅性。

Parseval定理的完整形式为:

∑ k = 0 ∞ ∣ c k ∣ 2 ∥ ϕ k ∥ 2 = ∫ a b ∣ f ( x ) ∣ 2 w ( x ) d x \sum_{k=0}^{\infty} |c_k|^2 \|\phi_k\|^2 = \int_a^b |f(x)|^2 w(x) dx k=0ck2ϕk2=abf(x)2w(x)dx

这个恒等式不仅保证了能量守恒,还提供了收敛性判据。对于归一化正交基,Parseval定理简化为:

∥ f ∥ 2 = ∑ k = 0 ∞ ∣ c k ∣ 2 \|f\|^2 = \sum_{k=0}^{\infty} |c_k|^2 f2=k=0ck2

这表明信号在时域和变换域的能量完全相等,是线性变换保持内积结构的直接结果。从泛函分析角度,这反映了正交变换是酉变换(unitary transformation)的特性: U ∗ U = U U ∗ = I U*U = UU* = I UU=UU=I

正交基展开的经典实例

傅里叶基是最著名的正交基系统。复指数函数集 e ( i n ω 0 t ) {e^(inω₀t)} e(inω0t) 在周期 T = 2 π / ω 0 T = 2π/ω₀ T=2π/ω0 上构成完备正交基,满足正交条件:

∫ 0 T e i n ω 0 t e − i m ω 0 t d t = ∫ 0 T e i ( n − m ) ω 0 t d t = { T if  n = m 0 if  n ≠ m \int_0^T e^{inω_0t} e^{-imω_0t} dt = \int_0^T e^{i(n-m)ω_0t} dt = \begin{cases} T & \text{if } n = m \\ 0 & \text{if } n \neq m \end{cases} 0Teinω0teimω0tdt=0Tei(nm)ω0tdt={T0if n=mif n=m

任何周期函数都可以展开为傅里叶级数:

f ( t ) = ∑ n = − ∞ ∞ c n e i n ω 0 t f(t) = \sum_{n=-\infty}^{\infty} c_n e^{inω_0t} f(t)=n=cneinω0t

其中系数通过正交性计算:

c n = 1 T ∫ 0 T f ( t ) e − i n ω 0 t d t c_n = \frac{1}{T} \int_0^T f(t) e^{-inω_0t} dt cn=T10Tf(t)einω0tdt

傅里叶变换的卷积定理展示了正交基的深层数学结构。若 F [ f ( t ) ] = F ( ω ) F[f(t)] = F(ω) F[f(t)]=F(ω) F [ g ( t ) ] = G ( ω ) F[g(t)] = G(ω) F[g(t)]=G(ω),则:

F [ f ∗ g ] = F ( ω ) ⋅ G ( ω ) F[f * g] = F(ω) \cdot G(ω) F[fg]=F(ω)G(ω)

这个性质的证明利用了复指数的正交性:

∫ − ∞ ∞ e i ( ω − ω ′ ) t d t = 2 π δ ( ω − ω ′ ) \int_{-\infty}^{\infty} e^{i(ω-ω')t} dt = 2π\delta(ω - ω') ei(ωω)tdt=2πδ(ωω)

小波基提供了时频局域化的多分辨率分析。从尺度函数 φ ( t ) φ(t) φ(t) 和母小波 ψ ( t ) ψ(t) ψ(t) 出发,构造正交小波基:

ϕ j , k ( t ) = 2 j / 2 ϕ ( 2 j t − k ) \phi_{j,k}(t) = 2^{j/2} \phi(2^j t - k) ϕj,k(t)=2j/2ϕ(2jtk)
ψ j , k ( t ) = 2 j / 2 ψ ( 2 j t − k ) \psi_{j,k}(t) = 2^{j/2} \psi(2^j t - k) ψj,k(t)=2j/2ψ(2jtk)

这些函数满足双正交关系:

⟨ ϕ j , k , ϕ j ′ , k ′ ⟩ = δ j , j ′ δ k , k ′ \langle \phi_{j,k}, \phi_{j',k'} \rangle = \delta_{j,j'} \delta_{k,k'} ϕj,k,ϕj,k=δj,jδk,k
⟨ ψ j , k , ψ j ′ , k ′ ⟩ = δ j , j ′ δ k , k ′ \langle \psi_{j,k}, \psi_{j',k'} \rangle = \delta_{j,j'} \delta_{k,k'} ψj,k,ψj,k=δj,jδk,k
⟨ ϕ j , k , ψ j ′ , k ′ ⟩ = 0 \langle \phi_{j,k}, \psi_{j',k'} \rangle = 0 ϕj,k,ψj,k=0

多分辨率分析的核心是尺度方程(细化方程):

ϕ ( t ) = 2 ∑ k h k ϕ ( 2 t − k ) \phi(t) = \sqrt{2} \sum_{k} h_k \phi(2t - k) ϕ(t)=2 khkϕ(2tk)

其中 h k {hₖ} hk 是低通滤波器系数,满足归一化条件 Σ k h k = √ 2 Σₖhₖ = √2 Σkhk=√2。小波函数与高通滤波器的关系为:

ψ ( t ) = 2 ∑ k g k ϕ ( 2 t − k ) \psi(t) = \sqrt{2} \sum_{k} g_k \phi(2t - k) ψ(t)=2 kgkϕ(2tk)

其中 g k = ( − 1 ) k h 1 − k gₖ = (-1)ᵏh₁₋ₖ gk=(1)kh1k,保证了小波的正交性。

Legendre多项式通过递推关系生成,展示了正交多项式的代数结构:

( n + 1 ) P n + 1 ( x ) = ( 2 n + 1 ) x P n ( x ) − n P n − 1 ( x ) (n+1)P_{n+1}(x) = (2n+1)x P_n(x) - n P_{n-1}(x) (n+1)Pn+1(x)=(2n+1)xPn(x)nPn1(x)

起始条件为 P 0 ( x ) = 1 , P 1 ( x ) = x P₀(x) = 1, P₁(x) = x P0(x)=1,P1(x)=x。这些多项式在 [ − 1 , 1 ] [-1,1] [1,1] 上关于权函数 w ( x ) = 1 w(x) = 1 w(x)=1 正交:

∫ − 1 1 P m ( x ) P n ( x ) d x = 2 2 n + 1 δ m n \int_{-1}^1 P_m(x) P_n(x) dx = \frac{2}{2n+1} \delta_{mn} 11Pm(x)Pn(x)dx=2n+12δmn

Legendre多项式的生成函数为:

1 1 − 2 x t + t 2 = ∑ n = 0 ∞ P n ( x ) t n \frac{1}{\sqrt{1 - 2xt + t^2}} = \sum_{n=0}^{\infty} P_n(x) t^n 12xt+t2 1=n=0Pn(x)tn

这个生成函数揭示了 Legendre 多项式与物理中的势函数展开的深刻联系。

Rodrigues公式提供了 Legendre 多项式的显式表达:

P n ( x ) = 1 2 n n ! d n d x n ( x 2 − 1 ) n P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n}(x^2 - 1)^n Pn(x)=2nn!1dxndn(x21)n

这个公式连接了多项式理论和微分算子,体现了正交多项式的深层数学结构。

过完备非正交基的数学框架

过完备字典从根本上改变了信号表示的范式。在 R n ℝⁿ Rn 中,字典 D = [ d 1 , d 2 , . . . , d p ] ∈ R n x p D = [d₁, d₂, ..., dₚ] ∈ ℝⁿˣᵖ D=[d1,d2,...,dp]Rnxp 称为过完备的,当 p > n p > n p>n,即原子(列向量)的数量超过了空间的维数。冗余因子 r = p / n > 1 r = p/n > 1 r=p/n>1 度量了字典的过完备程度。过完备字典的基本性质可通过框架理论(frame theory)严格描述。字典 D D D 构成框架,当且仅当存在常数 0 < A ≤ B < ∞ 0 < A ≤ B < ∞ 0<AB<,使得对所有 x ∈ R n x ∈ ℝⁿ xRn 有:

A ∥ x ∥ 2 ≤ ∑ i = 1 p ∣ ⟨ x , d i ⟩ ∣ 2 ≤ B ∥ x ∥ 2 A\|x\|^2 \leq \sum_{i=1}^p |\langle x, d_i \rangle|^2 \leq B\|x\|^2 Ax2i=1px,di2Bx2

常数 A A A B B B 分别称为下界和上界框架常数。当 A = B A = B A=B 时,称为紧框架。

过完备表示的非唯一性导致了稀疏优化问题。给定观测 y = Φ x y = Φx y=Φx,其中 Φ ∈ R m x n ( m < n ) Φ ∈ ℝᵐˣⁿ (m < n) ΦRmxn(m<n),我们寻求最稀疏的解:

min ⁡ ∥ x ∥ 0 subject to y = Φ x \min \|x\|_0 \quad \text{subject to} \quad y = \Phi x minx0subject toy=Φx

这是一个组合优化问题,具有 ℓ 0 ℓ₀ 0 “伪范数”:

∥ x ∥ 0 = ∣ { i : x i ≠ 0 } ∣ \|x\|_0 = |\{i : x_i \neq 0\}| x0={i:xi=0}

由于 ℓ 0 ℓ₀ 0 最小化是 NP-难问题,通常使用 ℓ 1 ℓ₁ 1 松弛:

min ⁡ x    ∥ x ∥ 1 subject to y = Φ x \min_{x}\; \|x\|_1 \quad \text{subject to}\quad y = \Phi x xminx1subject toy=Φx

其中 ‖ x ‖ 1 = Σ i ∣ x i ∣ ‖x‖₁ = Σᵢ|xᵢ| x1=Σixi ℓ 1 ℓ₁ 1 范数。

限制等距性质(RIP) 为稀疏恢复提供了理论基础。矩阵 Φ Φ Φ 满足 k-RIP,如果存在 δ k ∈ ( 0 , 1 ) δₖ ∈ (0,1) δk(0,1) 使得:

( 1 − δ k ) ∥ x ∥ 2 2 ≤ ∥ Φ x ∥ 2 2 ≤ ( 1 + δ k ) ∥ x ∥ 2 2 (1 - \delta_k)\|x\|_2^2 \leq \|\Phi x\|_2^2 \leq (1 + \delta_k)\|x\|_2^2 (1δk)x22∥Φx22(1+δk)x22

对所有 k k k-稀疏向量 x x x 成立。RIP 常数定义为:

δ k = min ⁡ { δ : ( 1 − δ ) ∥ x ∥ 2 2 ≤ ∥ Φ x ∥ 2 2 ≤ ( 1 + δ ) ∥ x ∥ 2 2 } \delta_k = \min\{\delta : (1-\delta)\|x\|_2^2 \leq \|\Phi x\|_2^2 \leq (1+\delta)\|x\|_2^2\} δk=min{δ:(1δ)x22∥Φx22(1+δ)x22}

Candès-Tao 定理建立了精确恢复的充分条件:如果 Φ Φ Φ 满足 δ 2 k < √ 2 − 1 ≈ 0.414 δ₂ₖ < √2 - 1 ≈ 0.414 δ2k<√210.414,那么每个 k k k-稀疏信号都可以通过 ℓ 1 ℓ₁ 1 最小化精确恢复。

互相干性(mutual coherence)提供了另一个重要的分析工具。对于归一化字典 D D D,互相干性定义为:

μ ( D ) = max ⁡ 1 ≤ i < j ≤ p ∣ ⟨ d i , d j ⟩ ∣ \mu(D) = \max_{1 \leq i < j \leq p} |\langle d_i, d_j \rangle| μ(D)=1i<jpmaxdi,dj

Welch下界给出了互相干性的理论下限:

μ ( D ) ≥ p − n n ( p − 1 ) \mu(D) \geq \sqrt{\frac{p-n}{n(p-1)}} μ(D)n(p1)pn

p > > n p >> n p>>n 时,下界近似为 μ ( D ) ≥ 1 / √ n μ(D) ≥ 1/√n μ(D)1/√n

基于互相干性的恢复定理:如果稀疏度满足 ‖ x ‖ 0 < ( 1 + 1 / μ ( D ) ) / 2 ‖x‖₀ < (1 + 1/μ(D))/2 x0<(1+1/μ(D))/2,则 x x x ℓ 1 ℓ₁ 1 最小化的唯一解。这个条件虽然比 RIP 更保守,但便于验证。

Null Space Property (NSP) 提供了 ℓ 1 ℓ₁ 1 恢复的必要充分条件。矩阵 Φ Φ Φ 满足 k k k-阶 NSP,如果对于 Φ Φ Φ 的零空间中的任意非零向量 η η η,有:

∥ η S ∥ 1 < ∥ η S c ∥ 1 \|\eta_S\|_1 < \|\eta_{S^c}\|_1 ηS1<ηSc1

其中 S 是任意大小为 k 的索引集,ηₛ 表示 η 在 S 上的限制。

稀疏信号的可恢复性还与测量矩阵的谱性质密切相关。Johnson-Lindenstrauss 引理保证:对于任意 ε ∈ ( 0 , 1 ) ε ∈ (0,1) ε(0,1),如果

m ≥ O ( log ⁡ N ε 2 ) m \geq O\left(\frac{\log N}{\varepsilon^2}\right) mO(ε2logN)

则存在线性映射 f : R N → R m f: ℝᴺ → ℝᵐ f:RNRm,使得对所有 x x x 有:

( 1 − ε ) ∥ x ∥ 2 ≤ ∥ f ( x ) ∥ 2 ≤ ( 1 + ε ) ∥ x ∥ 2 (1-\varepsilon)\|x\|^2 \leq \|f(x)\|^2 \leq (1+\varepsilon)\|x\|^2 (1ε)x2f(x)2(1+ε)x2

这为压缩感知中随机测量矩阵的设计提供了理论指导。

压缩感知中的恢复算法

基追踪(Basis Pursuit)通过求解凸优化问题实现稀疏恢复。标准基追踪问题表述为:

min ⁡ x ∥ x ∥ 1 subject to A x = b \min_x \|x\|_1 \quad \text{subject to} \quad Ax = b xminx1subject toAx=b

当存在噪声时,问题转化为基追踪去噪(BPDN):

min ⁡ x ∥ x ∥ 1 subject to ∥ A x − b ∥ 2 ≤ ε \min_x \|x\|_1 \quad \text{subject to} \quad \|Ax - b\|_2 \leq \varepsilon xminx1subject toAxb2ε

或其 Lagrangian 形式:

min ⁡ x 1 2 ∥ A x − b ∥ 2 2 + λ ∥ x ∥ 1 \min_x \frac{1}{2}\|Ax - b\|_2^2 + \lambda\|x\|_1 xmin21Axb22+λx1

这个问题可以通过内点法求解,其对偶问题为:

max ⁡ u b T u subject to ∥ A T u ∥ ∞ ≤ 1 \max_{u} b^T u \quad \text{subject to} \quad \|A^T u\|_{\infty} \leq 1 umaxbTusubject toATu1

KKT(Karush-Kuhn-Tucker)条件给出了最优解的特征。设 x ∗ x* x 是 BPDN 的最优解,则存在对偶变量 u ∗ u* u,使得:

A T u ∗ + λ z ∗ = 0 A^T u^* + \lambda z^* = 0 ATu+λz=0

其中 z ∗ ∈ ∂ ‖ x ∗ ‖ 1 z* ∈ ∂‖x*‖₁ zx1 ℓ 1 ℓ₁ 1 范数的次梯度:

z i ∗ = { sign ( x i ∗ ) if  x i ∗ ≠ 0 [ − 1 , 1 ] if  x i ∗ = 0 z_i^* = \begin{cases} \text{sign}(x_i^*) & \text{if } x_i^* \neq 0 \\ [-1, 1] & \text{if } x_i^* = 0 \end{cases} zi={sign(xi)[1,1]if xi=0if xi=0

正交匹配追踪(OMP) 采用贪婪策略构建稀疏表示。算法的核心步骤包括:

  1. 残差初始化
    r 0 = y , Λ 0 = ∅ r₀ = y, Λ₀ = ∅ r0=y,Λ0=
  2. 原子选择
    j k = arg ⁡ max ⁡ j ∉ Λ k − 1 ∣ ⟨ r k − 1 , ϕ j ⟩ ∣ j_k = \arg\max_{j \notin \Lambda_{k-1}} |\langle r_{k-1}, \phi_j \rangle| jk=argj/Λk1maxrk1,ϕj
  3. 支撑集更新 Λ k = Λ k − 1 ∪ j k Λₖ = Λₖ₋₁ ∪ {jₖ} Λk=Λk1jk
  4. 最小二乘解
    x Λ k = arg ⁡ min ⁡ ∥ y − Φ Λ k x ∥ 2 2 x_{\Lambda_k} = \arg\min \|y - \Phi_{\Lambda_k} x\|_2^2 xΛk=argminyΦΛkx22
  5. 残差更新
    r k = y − Φ Λ k x Λ k r_k = y - \Phi_{\Lambda_k} x_{\Lambda_k} rk=yΦΛkxΛk

O M P OMP OMP 的收敛性可通过残差能量的单调递减性质证明:

∥ r k ∥ 2 2 = ∥ r k − 1 ∥ 2 2 − ∣ ⟨ r k − 1 , ϕ j k ⟩ ∣ 2 ∥ ϕ j k ∥ 2 2 \|r_k\|_2^2 = \|r_{k-1}\|_2^2 - \frac{|\langle r_{k-1}, \phi_{j_k} \rangle|^2}{\|\phi_{j_k}\|_2^2} rk22=rk122ϕjk22rk1,ϕjk2

这保证了 ‖ r k ‖ 2 2 ≤ ‖ r k − 1 ‖ 2 2 ‖rₖ‖₂² ≤ ‖rₖ₋₁‖₂² rk22rk122,算法单调收敛。

O M P OMP OMP 的恢复保证与互相干性直接相关。如果真实信号的稀疏度满足:

∥ x ∗ ∥ 0 < 1 2 ( 1 + 1 μ ) \|x^*\|_0 < \frac{1}{2}\left(1 + \frac{1}{\mu}\right) x0<21(1+μ1)

O M P OMP OMP 能在 ‖ x ∗ ‖ 0 ‖x*‖₀ x0 步内精确恢复 x ∗ x* x

匹配追踪(MP) O M P OMP OMP 的简化版本,省略了正交化步骤。 M P MP MP 的原子选择策略相同,但系数更新采用简单的梯度下降:

x j k ( k ) = x j k ( k − 1 ) + ⟨ r k − 1 , ϕ j k ⟩ x_{j_k}^{(k)} = x_{j_k}^{(k-1)} + \langle r_{k-1}, \phi_{j_k} \rangle xjk(k)=xjk(k1)+rk1,ϕjk

M P MP MP 的收敛速度可通过以下不等式估计:

∥ r k ∥ 2 2 ≤ ( 1 − μ 2 ) k ∥ y ∥ 2 2 \|r_k\|_2^2 \leq \left(1 - \mu^2\right)^k \|y\|_2^2 rk22(1μ2)ky22

其中 μ μ μ 是字典的相干性。这表明 M P MP MP 以指数速度收敛,但比 O M P OMP OMP 慢。

压缩采样匹配追踪(CoSaMP) 结合了贪婪选择和全局优化:

  1. 支撑集估计
    Ω = supp ( HT 2 s ( Φ T r ) ) \Omega = \text{supp}(\text{HT}_{2s}(\Phi^T r)) Ω=supp(HT2s(ΦTr))
    其中 H T k ( ⋅ ) HT_k(·) HTk() 是硬阈值算子,保留 k k k 个最大分量。

  2. 最小二乘求解
    b ∣ T = arg ⁡ min ⁡ ∥ y − Φ T b ∥ 2 2 b|_T = \arg\min \|y - \Phi_T b\|_2^2 bT=argminyΦTb22

  3. 稀疏化
    x n e w = HT s ( b ) x^{new} = \text{HT}_s(b) xnew=HTs(b)

CoSaMP 的恢复保证为:如果 Φ Φ Φ 满足 RIP 条件 δ 3 s < 0.1 δ₃ₛ < 0.1 δ3s<0.1,则算法线性收敛:

∥ x ( k ) − x ∗ ∥ 2 ≤ ρ k ∥ x ( 0 ) − x ∗ ∥ 2 + τ σ s ( x ∗ ) 1 \|x^{(k)} - x^*\|_2 \leq \rho^k \|x^{(0)} - x^*\|_2 + \tau \sigma_s(x^*)_1 x(k)x2ρkx(0)x2+τσs(x)1

其中 ρ < 1 ρ < 1 ρ<1 是收敛因子, σ s ( x ∗ ) 1 σₛ(x*)₁ σs(x)1 表示 x ∗ x* x 的最佳 s s s-项逼近误差。

**迭代软阈值算法(ISTA)**通过迭代软阈值实现 ℓ 1 ℓ₁ 1 最小化:

x ( k + 1 ) = S λ / L ( x ( k ) − 1 L Φ T ( Φ x ( k ) − y ) ) x^{(k+1)} = S_{\lambda/L}(x^{(k)} - \frac{1}{L}\Phi^T(\Phi x^{(k)} - y)) x(k+1)=Sλ/L(x(k)L1ΦT(Φx(k)y))

其中 L L L Φ T Φ Φᵀ Φ ΦTΦ 的最大特征值,软阈值算子定义为:

S τ ( z ) = sign ( z ) max ⁡ ( ∣ z ∣ − τ , 0 ) S_\tau(z) = \text{sign}(z) \max(|z| - \tau, 0) Sτ(z)=sign(z)max(zτ,0)

ISTA 的收敛率为 O ( 1 / k ) O(1/k) O(1/k),而其加速版本 FISTA 达到最优的 O ( 1 / k 2 ) O(1/k²) O(1/k2) 收敛率。

两种基底系统的本质区别

正交基和过完备基的根本区别源于线性代数的基本理论。在 n n n 维向量空间中,正交基恰好包含 n n n 个线性无关的向量,构成空间的一组基底。给定信号 x ∈ R n x ∈ ℝⁿ xRn 和正交标准基 φ i i = 1 n {φᵢ}ᵢ₌₁ⁿ φii=1n,表示系数唯一确定:

x = ∑ i = 1 n ⟨ x , ϕ i ⟩ ϕ i x = \sum_{i=1}^n \langle x, \phi_i \rangle \phi_i x=i=1nx,ϕiϕi

这种唯一性保证了变换的可逆性: x = U T U x x = UᵀUx x=UTUx,其中 U U U 是正交矩阵,满足 U T U = U U T = I UᵀU = UUᵀ = I UTU=UUT=I

过完备基则突破了维数限制。字典 D = [ d 1 , d 2 , . . . , d p ] ∈ R n x p D = [d₁, d₂, ..., dₚ] ∈ ℝⁿˣᵖ D=[d1,d2,...,dp]Rnxp p > n p > n p>n 时构成过完备表示。信号的表示变为欠定方程组:

x = D α x = D\alpha x=Dα

r a n k ( D ) = n rank(D) = n rank(D)=n 时,解空间是 ( p − n ) (p-n) (pn) 维的仿射子空间:

{ α : D α = x } = α 0 + null ( D ) \{\alpha : D\alpha = x\} = \alpha_0 + \text{null}(D) {α:Dα=x}=α0+null(D)

其中 α 0 α₀ α0 是特解, n u l l ( D ) null(D) null(D) D D D 的零空间。

计算复杂度的数学分析揭示了两种方法的根本差异。正交变换的分析复杂度为:

  • 直接计算: O ( n 2 ) O(n²) O(n2) 次乘法运算
  • 快速算法(FFT/FWT): O ( n l o g n ) O(n log n) O(nlogn) 次运算
  • 存储需求: O ( n ) O(n) O(n) 个系数

过完备方法的复杂度取决于求解策略:

  • ℓ 1 ℓ₁ 1 最小化(内点法): O ( p 3 ) O(p³) O(p3) O ( p 3.5 ) O(p^{3.5}) O(p3.5) 次运算
  • OMP: O ( k n p ) O(knp) O(knp) 次运算,其中 k k k 是稀疏度
  • 存储需求: O ( k + p × n ) O(k + p×n) O(k+p×n) 个参数

稀疏性与逼近误差的权衡体现了两种方法的本质差异。对于正交基展开:

∥ x − x N ∥ 2 2 = ∑ i = N + 1 ∞ ∣ ⟨ x , ϕ i ⟩ ∣ 2 \|x - x_N\|_2^2 = \sum_{i=N+1}^{\infty} |\langle x, \phi_i \rangle|^2 xxN22=i=N+1x,ϕi2

其中 x n xₙ xn N N N 项截断。逼近误差直接依赖于系数的衰减速度。

过完备表示的逼近误差更加复杂。设 x x x k k k-稀疏逼近为 x ^ x̂ x^,则:

∥ x − x ^ ∥ 2 ≤ C σ k ( x ) 1 k \|x - \hat{x}\|_2 \leq C \frac{\sigma_k(x)_1}{\sqrt{k}} xx^2Ck σk(x)1

其中 σ k ( x ) 1 σₖ(x)₁ σk(x)1 x x x 的最佳 k k k-项逼近的 ℓ 1 ℓ₁ 1 误差, C C C 是依赖于字典性质的常数。

Riesz 基理论为两种方法提供了统一的数学框架。序列 x i i = 1 ∞ {xᵢ}ᵢ₌₁^∞ xii=1 构成 Riesz 基,如果存在常数 0 < A ≤ B < ∞ 0 < A ≤ B < ∞ 0<AB<,使得:

A ∑ i = 1 ∞ ∣ c i ∣ 2 ≤ ∥ ∑ i = 1 ∞ c i x i ∥ 2 ≤ B ∑ i = 1 ∞ ∣ c i ∣ 2 A \sum_{i=1}^{\infty} |c_i|^2 \leq \left\|\sum_{i=1}^{\infty} c_i x_i\right\|^2 \leq B \sum_{i=1}^{\infty} |c_i|^2 Ai=1ci2 i=1cixi 2Bi=1ci2

对所有有限序列 c i {cᵢ} ci 成立。当 A = B = 1 A = B = 1 A=B=1 时,Riesz 基退化为正交基。

条件数分析揭示了数值稳定性的差异。正交矩阵的条件数恒为 1:

κ ( U ) = σ max ⁡ ( U ) σ min ⁡ ( U ) = 1 \kappa(U) = \frac{\sigma_{\max}(U)}{\sigma_{\min}(U)} = 1 κ(U)=σmin(U)σmax(U)=1

过完备字典的条件数通常远大于 1。对于框架 D D D,条件数为:

κ ( D ) = B A \kappa(D) = \sqrt{\frac{B}{A}} κ(D)=AB

其中 A , B A, B A,B 是框架常数。大的条件数意味着对噪声的敏感性增加。

信息论观点进一步阐明了差异。正交变换保持信息量:

I ( x ) = I ( U x ) = − ∑ i = 1 n p i log ⁡ p i I(x) = I(Ux) = -\sum_{i=1}^n p_i \log p_i I(x)=I(Ux)=i=1npilogpi

其中 p i pᵢ pi 是概率分布。过完备表示则可能增加信息冗余度:

R = p n − 1 R = \frac{p}{n} - 1 R=np1

这种冗余度使得系统对部分信息丢失具有鲁棒性。

稳定性分析通过扰动理论比较两种方法。对于正交基,系数扰动与信号扰动同尺度:

∥ δ c ∥ 2 = ∥ δ x ∥ 2 \|\delta c\|_2 = \|\delta x\|_2 δc2=δx2

过完备情况下,扰动放大取决于字典的条件数:

∥ δ α ∥ 2 ≤ κ ( D ) ∥ δ x ∥ 2 \|\delta \alpha\|_2 \leq \kappa(D) \|\delta x\|_2 δα2κ(D)δx2

这表明过完备方法在噪声环境下可能表现不稳定,需要正则化技术来改善性能。

量子力学中的不确定性原理为两种方法提供了物理直觉。时域和频域的同时精确测量受到基本限制:

Δ t ⋅ Δ ω ≥ 1 2 \Delta t \cdot \Delta \omega \geq \frac{1}{2} ΔtΔω21

正交基(如傅里叶基)在频域极度精确,但时域分辨率为零。小波等过完备系统通过牺牲正交性获得了时频折衷,体现了测不准原理在信号处理中的表现。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DuHz

喜欢就支持一下 ~ 谢谢啦!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值