信息隐藏|Robust Image Steganography: Hiding Messages in Frequency Coefficients

文章来源2023AAAI

提出问题:现有的大多数作品都无法在保持相对较大的嵌入容量的同时,对有损JPEG压缩提供良好的鲁棒性。(隐写图像在社交网络上传输时不可避免地会遇到失真,例如JPEG压缩,这会使提取消息变得非常复杂。)

解决方法:提出了一种基于可逆神经网络(INN)的端到端鲁棒性隐写系统。该方法不是在空间域进行隐藏,而是直接将秘密信息隐藏到载体图像的离散余弦变换(DCT)系数中,从而显著提高了鲁棒性和抗干扰安全性。首先提出了一种互信息损失来限制INN中的信息流。此外,还实现了双向融合模块(TWFM),利用空间和DCT域特征作为辅助信息来促进信息提取。这两种设计有助于从DCT系数中无损地恢复秘密信息。

下图是鲁棒的图像隐写的通用流程:

 

本文方法不是选择空间图像像素,而是利用DCT系数进行信息嵌入。由于JPEG压缩中的量化和舍入操作直接作用于DCT系数,因此JPEG压缩对DCT系数的修改比在空间域或小波域更直观,更易于建模。

(提到了以往基于INN隐写方法(如ISN、HiNet、RIIS),并表示他们虽然实现了大容量,但是上述所有INN方法都会导致恢复消息的误码率高,在这种情况下直接应用它们对哪怕是一个错误恢复比特的零容忍度是不切实际的)简单理解就是 本文在INN基础上,实现了鲁棒性

本文方法框架:

关于框图解读:

  1. JPEG压缩层是一个模拟器,将不可微的JPEG压缩模拟成可微的近似形式,然后将其引入到端到端网络中,以减轻失真影响,有效地提高鲁棒性。
  2. TWFM经过精心设计,充分结合了空间和DCT域的特征来恢复信息。
  3. 为了确保INN的两个输入大小相同,我们将秘密消息输入作为一个三维体积进行管理,如果有效载荷小于1 bpp,则将每个具有相同值的比特填充到8×8小块中。
  4. 前向隐藏过程中,对载体图像进行DCT变换,形成与空间图像大小相同的三维DCT系数立方体。然后隐藏块把秘密信息嵌入到DCT系数中。
  5. TWFM(双向融合模块)将被攻击的隐写图像及其频率系数合并生成辅助变量矩阵z。即插即用,可以与INN端到端联合训练。

 关于TWFM的解读:出于两个原因:(1)在隐藏秘密信息时,高容量嵌入不可避免的会在对载体造成损害(2)为了避免生成隐写图像的视觉失真,很难将秘密信息完全嵌入到载体中。上述两个信息损失就构成了丢失的信息矩阵L。(在这里又提到了HiNet是从高斯分布中随机抽取样本组成辅助变量z的,然后对每个采样的z进行训练,以确保INN能够恢复秘密信息,但是这种方法并没有充分考虑到L包含来自输入特征的有效信息,这些信息应该在揭示过程中尽可能的利用,也就是说丢弃L,将导致迷秘密信息的恢复准确性降低)

TWFM的示意图如上,其中,输入是被攻击的隐写图像和它的DCT系数(频率特征)。权重图通过元素积在空间域和频率域为相应的特征分配0到1之间的权重,它从Sa和Sdct中选择有意义的特征,同时抑制一些不相关的细节。(也就是说,权重图W表示从输入特征矩阵中获得的区域信息的重要性,其中需要更多地关注高权重元素。)

关于JPEG压缩层的解读:JPEG压缩过程包含一个不可微的步骤(舍入函数式分阶段函数)。因此,JPEG不适合直接进行端到端优化。这个层就是采用一种模拟计算,将不可微的JPEG进行可微形式的模拟,从而在训练过程中保持梯度传播。(很常见的方法)

关于判别器解读:本文中的判别器由个组组成。从1-5组,每个组由一个卷积+一个BN+一个leakyReLU组成。第6组包含一个平均全局池化(GAP)和一个输出分裂概率的线性层。

关于损失函数解读

公式对应项就是:隐藏损失(MSE)+恢复损失(MSE)-判别损失(交叉熵损失)+互信息损失

关于互信息损失解读:互信息反映了两个变量之间的相关性:一个变量中包含的关于另一个变量的信息量。比如前向隐藏过程以秘密消息M作为输入,以丢失矩阵L作为输出。理想情况下,当他们之间的互信息接近于0时,可以假设L的分布与输入M的分布无关,此时就可以丢弃L,不呈现丢失信息以供恢复。以此,为了在嵌入中保持有效信息,提出了互信息损失来约束信息流的方向。(一种信息熵方法)

实验部分:

数据集:MSCOCO,随机选5000作为train的cover,1000张做test的cover。不重叠,并裁剪。

评价指标:PSNR、SSIM、BER(误码率)恢复的消息m是浮点数,因此将m中大于0.5的位映射为1,其余位映射为0

性能分析,定量结果如表:

其中,ABDH和HiNet是以图藏图的,为了使它能够以1bpp的容量使用,对网络进行了微调,以隐藏消息位。可以注意到,不仅PSNR/SSIM值较高,而且恢复精度达到了100%。

定性结果:伪影较小,视觉质量优于其他方法。

对JPEG压缩的稳健性:使用不同质量因子(QF)的模拟JPEG压缩训练模型,并使用相同的质量因子进行测试。

可以看到,隐写图像和载体图像之间的差异几乎不可见。

训练和测试使用相同QF,可见即使在QF=10的高强度压缩下,依旧保持BER<3.这表明该方法对严重的JPEG压缩失真具有较强的抵抗能力。由于误码率很低,所以在实际应用中利用纠错码就可以达到100%的提取精度。

与鲁棒隐藏方法的比较:固定PSNR在33.5dB,然后对误码率进行比较:

隐写安全性测量:一般都是通过测量某种隐写分析器区分隐写算法生成图像的检测误差来评价的,有研究表明,与传统的隐写分析器相比,基于cnn的隐写分析器能够显著降低检测误差,文章的验证采用了三种先进的隐写分析网络:XuNet、SRNet和WISERNet。每种方法生成5000个隐写-载体对来重新训练隐写分析网络:

消融实验:(1)离散余弦变换的有效性:将秘密信息分别嵌入到空间域(不使用DCT)和(使用)DCT域,伪影可见与不可见差异明显,同时从表中第一二行可见,除了PSNR/SSIM的增加,检测误差也从4.81增加到10.36,这进一步表明DCT变换对于JPEG压缩具有固有鲁棒性,起到不可或缺的作用

(2)Ld判别损失的有效性:判别器向生成器提供的反馈使其能够增强生成的隐写图像的隐蔽性和安全性。如上表的第二三行,PSNR和SSIM均得到提高。此外,隐写安全性得到了提高,检测误差提高了8.65.

(3)Lm和TWFM的有效性:Lm可以指导INN中的信息流流向产生更多隐写图像的分支,从而为恢复过程保留有效信息。TWFM充分利用这些信息来促进秘密消息的恢复。有无Lm和TWFM的训练损失曲线如图所示。可见二者聚能在一定程度上加快网络在训练中的收敛速度,降低整个网络的总损失。从表第三四行来看,秘密/恢复对的误码率降低也凸显了二者的贡献。

实验贡献总结

1.产生高保真的隐写图像,并且在1 bpp的嵌入容量下,信息提取的误差为0;

2.在传输信道的QF已知或未知的情况下,方法对JPEG压缩具有鲁棒性,显示了良好的泛化性能;

3.在三种基于深度学习的隐写网络检测下具有最佳的安全性能

  • 19
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值