backbone、head、neck功能

 

backbone翻译的很好,主干部分。这个主干网络大多时候指的是提取特征的网络,其作用就是提取图片中的信息,共后面的网络使用。这些网络经常使用的是resnet VGG等,而不是我们自己设计的网络,因为这些网络已经证明了在分类等问题上的特征提取能力是很强的。在用这些网络作为backbone的时候,都是直接加载官方已经训练好的模型参数,后面接着我们自己的网络。让网络的这两个部分同时进行训练,因为加载的backbone模型已经具有提取特征的能力了,在我们的训练过程中,会对他进行微调,使得其更适合于我们自己的任务。

neck:是放在backbonehead之间的,是为了更好的利用backbone提取的特征

headhead是获取网络输出内容的网络,利用之前提取的特征,head利用这些特征,做出预测

 

参考资料

https://blog.csdn.net/qq_39852676/article/details/105877991

  • 0
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: YOLOv8是一种基于单阶段目标检测器的深度学习模型,使用了类似于YOLOv5的设计,并在其基础上进行了改进。下面从backboneneckhead三个方面来介绍YOLOv8。 1. Backbone YOLOv8使用了Darknet53网络作为backbone,这是一种经典的卷积神经网络,具有较强的特征提取能力。Darknet53对输入图像进行了多次下采样,从而在一定程度上保留了图像的空间信息。 2. Neck YOLOv8的neck部分使用了多尺度特征融合技术,主要包括PANet和FPN两种方法。PANet通过对特征图进行不同尺度的池化和上采样来获得多尺度特征图,然后使用特征金字塔结构将它们融合在一起。FPN则通过对不同层级的特征图进行融合,产生具有不同大小的感受野的特征图,从而提高模型对目标的检测能力。 3. Head YOLOv8的head部分使用了YOLOv5的设计,包括SPP、PAN和SAM三种模块。其中,SPP模块通过对特征图进行金字塔式的池化操作,获得不同尺度的特征,从而提高模型对目标尺度变化的适应性;PAN模块则通过将多个小尺寸的特征图拼接成一个大尺寸的特征图,增强了模型对目标的检测能力;SAM模块则使用了注意力机制,通过学习不同区域的重要性,进一步提高了模型的性能。 综上所述,YOLOv8在backboneneckhead三个方面都进行了优化,使得模型在目标检测任务上表现出了较好的性能和鲁棒性。 ### 回答2: Yolo8是一种目标检测算法,它是基于深度学习的实时物体检测方法。它的整体架构包括backboneneckhead三个部分。 首先是backbone,它是整个算法的基础,通常使用一些经典的卷积神经网络(CNN)架构,例如ResNet、Darknet等,用于提取输入图像的特征。通过多层卷积和池化操作,backbone可以从原始图像中提取出底层到高层的特征表示,这些特征表示具有不同的语义信息,能够更好地揭示图像中的目标。 接下来是neck部分,它的作用是进一步提升特征的表达能力。在Yolo8中,neck采用了特征金字塔网络(Feature Pyramid Network,FPN)的结构,通过引入多尺度的特征图,使得算法能够更好地处理不同大小的目标。通过上采样和下采样的操作,neck将从backbone输出的特征图连接在一起,形成多层次的特征金字塔,使得Yolo8可以在不同尺度上进行物体检测,并获得更精确的检测结果。 最后是head部分,它负责对生成的特征图进行分类和定位操作,以检测出图像中的目标物体。在Yolo8中,head采用了单个卷积层来实现目标的识别和定位。这个卷积层同时输出了目标的类别概率及其位置的坐标,通过对特征图进行逐个像素的分类和回归,可以得到每个目标在图像中的位置和类别。 综上所述,Yolo8采用了backboneneckhead三个部分,通过特征提取、特征金字塔和分类回归来实现实时的目标检测。这种算法结构使得Yolo8在速度和准确性上取得了较好的平衡,成为目标检测领域的重要算法之一。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值