在神经网络中,"backbone"、"neck"和"head"是常用的术语,用于描述网络的不同部分和功能。它们通常用于对象检测、图像分类和语义分割等计算机视觉任务中。
1. Backbone(主干网络)
主干网络是神经网络的核心部分,负责从原始输入中提取特征。它通常由一系列卷积层和池化层组成,用于逐层处理图像或其他输入数据。主干网络的设计目标是能够捕获输入数据的语义信息和上下文相关性。主干网络的输出通常是一个高维特征图。
a. 主干网络通常由多个卷积层和池化层组成,用于逐层处理输入数据。这些层可以提取不同尺度、不同抽象级别的特征。
b. 常见的主干网络结构包括:
LeNet-5:是一个较早的卷积神经网络,用于手写数字识别任务。