电力系统分析作业-有功优化分析

电力系统中有功功率最优分配分析
Analysis of optimal distribution of active power in power system
李好好
(曲阜师范大学,工学院,电气工程)

Abstract: In today’s society, People’s Daily life is more and more inseparable from electricity, power resources play a vital role in human beings. At the same time, active power in the field of power system also has a great role, the role of active power is to transform electrical energy, turn it into kinetic energy, mechanical energy, heat energy and other forms of energy, and in the AC circuit, the average instantaneous power consumed within a cycle, can also be called active power, at the same time, also called the average power. Generator is the only generator of active power in the whole power system, which leads to the scarcity of active power. Based on this, the optimal distribution scheme of active power in power system is analyzed.
Key words: power system; Active power; Optimal allocation
摘要:当今社会,人们的日常生活越来越离不开电,电力资源对人类起着至关重要的作用。同时,有功功率在电力系统领域也有着很大的作用,有功功率的作用是对电能进行转化,将其变为动能、机械能、热能等其他形式的能量,而在交流电路中,一个周期内所消耗的瞬间功率的平均值,也可称为有功功率,同时,也叫做平均功率。发电机是全体电力系统中,有功功率的唯一发出者,导致有功功率的稀缺。基于此,对电力系统中有功功率的最优分配方案进行了分析。
关键词:电力系统;有功功率;最优分配
一、引言
国家的进步,离不开电力资源的支撑,近年来,随着我国综合国力飞速发展,各领域的进步都很大,电力作为重要组成部分之一,也取得了很多骄人的成绩,同时,电力系统今后的发展前景同样不容小觑。飞速的发展除了为人们的日常生活提供更多的便利外,更多的问题也接踵而来,电力系统应用的越来越广,范围越来越大,这也对电力系统整体质量要求越来越高,在当今全球能源紧缺的大环境下,有功功率作为电力系统重要的组成部分之一,如何对其做到合理有效的分配,是一个很重要的问题。
二、有功优化的国内外研究现状
有功优化是电力系统优化的一种重要方法,其目的是在满足电力需求和安全约束的前提下,通过调整发电机的出力、变压器的分接头位置等手段,实现电力系统的有功功率最优分配,从而提高电力系统的经济性和稳定性。
法国学者J. Carpentier在上世纪六十年代提出了电力系统最优潮流模型,并且该模型是建立在严格的数学基础上的。但是由于并没有应用到有功和无功的解耦性,所以当时的有功优化和无功优化是配合在一起计算的,随着不断的发展,人们逐渐开始将有功和无功分开计算,有功优化的目的是将有功负荷和有功电源的合理分配来实现经济型。电力系统的有功优化调度受到众多学者的瞩目,先后出现了传统的静态经济调度( economic dispatch, ED), 安全经济调度 ( security economic dispatch, SED )和最优潮流( optimal power flow, OPF )等一系列优秀的算法。
在国内,随着电力市场的逐步开放和电力需求的不断增长,有功优化逐渐成为了电力系统研究的重要方向。近年来,国内学者在有功优化方面进行了大量的研究和实践,取得了一定的成果。例如,一些学者提出了基于人工智能算法的有功优化方法,如遗传算法、粒子群算法等,这些方法能够快速找到最优解,但可能存在局部最优解的问题。还有一些学者提出了基于数学规划的有功优化方法,如线性规划、非线性规划等,这些方法能够得到全局最优解,但计算复杂度较高。
随着我国的飞速发展,科学的不断进步,电力等资源已能够实现自给自足,甚至大多数地区所产生的电力资源都能能够实现富余,因此,我国目前在资源的日常供给上已经不存在什么问题,现在的首要问题是资源的可持续利用性,因为地球的资源是有限的,人们需要尽可能的减少对资源的消耗、浪费,适当的降低用电成本,对资源进行合理分配等问题是现在的重中之重。这就需要人们从整个电力系统中寻找机会,对整体电力系统进行分析,通过对计算机技术、控制技术的完美配合,打造出一套耗能低,但是资源利用率高的供电体系[1]。
三、最优分配原则
3.1有功功率最优分配概述
电力系统中有功功率的最优分配由有两个主要内容,即有功功率电源的最优组合和有功功率负荷的最优分配。
有功功率电源的最优组合是指系统中发电设备和发电厂的合理组合,也就是通常所谓的机组的合理开停。它大体上包括三个部分:机组的最优组合顺序,机组的最优组合数量和机组的最优开停时间。因此,简而言之,这一方面涉及的是电力系统中冷备用容量的合理分布问题。合理组合机组的方法目前有最优组合顺序法,动态规划法,整数规划法等。
有功功率负荷的最优分配指的是系统的有功功率负荷在各个正在运行的发电设备或发电厂之间的合理分配。通常所谓负荷的经济分配指的是这一方面。这方面的研究目前已经有大量成果,最常用的则是按所谓等耗量微增率准则的分配。不难发现,这一方面恰好与前一方面相对,涉及的是电力系统中热备用容量的合理分布问题。
各类发电厂的运行特点不同。
火电厂以承担基本不变的负荷为宜。这样可避免频繁的开停设备和增减负荷。其中,高温高压电厂因效率最高,应优先投入,而且,由于它们可灵活调节的范围较窄,在负荷曲线的更底层部分运行更恰当。其次是中温中压电厂。低温低压电厂设备陈旧,效率很低,应及早淘汰。
无调节水库水电厂的全部功率和有调节水库水电厂的强迫功率都不可调,应首先投入。有调节水电厂的可调功率,在洪水季节,为防止弃水,往往也优先投入;在枯水季节则恰好相反,应承担高峰负荷。在耗尽日水量的前提下,枯水季节将水电厂的可调功率移在后面投入,不仅可使火电厂的负荷更加平稳,从而减少因开停设备或增减负荷而额外消耗的燃料,而且可使系统中的功率分配更合理,从而节约总的燃料消耗。更何况水电厂还有快速启动,快速增减负荷的突出优点。
抽水蓄能电厂在低谷负荷时,其水轮发电机组作电动机-水泵方式运行,因而应作负荷考虑;在高峰负荷时发电,与常水电厂无异。虽然这一抽水蓄能,放水发电的总效率只有70%左右,但因这类电厂的介入,使火电厂的负荷进一步平稳,就系统总体而言,是很合理的。这类电厂常伴随原子能电厂出现,其作用是确保原子能电厂有平稳的负荷。但系统中严重缺乏调节手段时,也应考虑建设这类电厂。
当然,在考虑中发电厂的合理组合问题时,不能忽视保证可靠供电、降低网络损耗、维持良好的电能质量和足够的系统稳定性要求。
由于水电厂的存在,不仅解决了一部分负荷,更重要的是,它大大减少了其它火电厂的负荷变动,为系统的稳定运行创造了条件。在枯水季节,往往就由系统中的大水电厂担任调频任务。
3.2有功功率最优分配的组成
电力系统中的最优分配配置,通常由两部分组成。第一部分为有功功率电源的最优组合,这部分所指的是整个系统中发电设施之间的相互配合,例如发电硬件设备与发电厂之间的合理规划,通俗一点来说,就是对机组开始和关闭的合理控制。深入研究会发现,此部分主要有三个层次,其一为发电硬件的开机与关闭;以及能组成最佳发电条件的机组数量;还有对硬件进行组合时,需要一个最合理的排序,以达到发电系统中硬件设施的最高标准。总体来说,这一部分主要指需要人们合理的在整体电力系统工作前对所有硬件设备进行布置的问题。目前,对硬件设备进行排序,效果较好的方法有最佳排序法等。第二部分主要是需要人们对有功功率的负荷进行合理的分配,这部分需要人们做到的是,对已经开始工作的硬件设备之间的相互协调,也需要人们对各个发电厂之间的进行协调,使得他们更好的配合,从而达到共同进步[2]。如果说第一部分是发电前的准备工作,那么第二部分就是发电工程中需要进行的操作,二者缺一不可,同样重要。
3.3火力发电厂
随着科学的进步,发电的形式越来越多,最传统的发电形式为火力发电,火电厂也是目前最常见的发电厂,虽然火力发电造成的污染以及资源浪费现象严重,但因其覆盖范围极广,对他的升级优化也很重要,根据有功功率原则,对于火力发电厂来说,因其不稳定的特性,需要人们对其提供一个恒定的负荷,不宜有过大波动,通过这些操作来减小设备来回启动的频率,同时,因为火电厂一般都是比较老旧的设备技术,还可以减小负荷[3]。在所有火力电厂中,目前最先进的是高温高压电厂,中温中压居中,而低温低压是目前最落后的电厂,人们在启动的时候需要按照这个顺序进行,尽可能的减少效率低下的低温低压电厂的使用,高温高压电厂不仅产电效率更高,其负荷范围更广,能够承载更频繁的负荷的变化,所以,如果条件允许的话,对低温低压进行升级改造,这样能有效的对电厂整体发电水平进行提高。
3.4水利发电厂
因为全球资源的匮乏,也因为火力发电的高污染,人们发明了水利发电系统,对于电力系统中的水利发电厂,人们要优先将无调节水库投入使用,因为其功率值固定的特性,人们不能后期对其进行调控,所以人们在设计好后就可以将其投入使用,而作为强迫功率不可调的有调节水库,可以紧随在无调节水库之后进行投入使用,这类水电厂的特点都是变化调节能力低下,甚至是没有,所以人们在规划好后就可以开始投入使用,但与无调节水库不同的是,有调节水库有一部分还是可以后期调节的,这就需要各发电厂派专人对气候进行监控,如到雨季,为了预防弃水等情况的发生,在发电的时候要对这类电厂优先考虑,如若到了旱季,这类电厂还需要担负的起最高点的负荷[4]。在旱季,如果不能达到水电厂的开启条件,就不要对水力电厂进行启动了,此时要优先考虑火力电厂,因为如果优先开启水力电厂后,遇到水力不足的情况,这就导致要对火电厂进行反复启动,对火力电厂的负荷反复增减,造成资源的损失、浪费,水电厂有着快速开关的特点,其对负荷量的承载能力还要优于火电厂,因此合理开启电厂使用顺序很重要。目前,水力发电还有一种电厂,蓄能式电厂,因为电厂所产生的电力在每个时刻都是恒定的,所以这类电厂的工作原理主要是在电力使用率较低的时候利用多余部分的电力将水抽取上来并进行存储,然后在用电高峰期在将存储的水放出,利用这部分水进行发电,来填补用电高峰期水电站不能及时生产的部分电力,因此,又称为蓄能式水电站。这些电厂可以将用电低谷期间的多于电能转化为用电高峰期打的高价值电能,虽然转化效率通常只有七成左右,但其同时还适用于调频、调相,稳定电力系统的周波和电压,故而,最适合作为备用电厂使用。但因为这类电厂的缺点同样很明显,就是其后期调控能力严重缺乏,所以日常使用中,这类电厂并没有被广泛使用,但是,这类电厂因通常能对核电站的发电效率进行有效的提高,并能确保其日常负荷的稳定性,因此常常与核电站一起建造。综上所述,人们在对电力系统的有功功率的分配过程中,要考虑到对发电厂组合的合理性,同时还要保证对日常用电量供应充足、降低能源消耗以及对各电厂所产生电力的质量有所保证,最后,由于电力不稳定的特性,一定要让电力系统的总体负荷量稳定而平缓[5]。
四、有功功率的计算
4.1有功功率负荷最优分配
在能源日益匮乏的今天,有功功率的目的就是对资源消耗尽可能的减少,因此有功功率最优分配应运而生,这种方法要求我们在不改变电力系统当中硬件设施的条件下对能源消耗进行合理有效的控制,这就需要我们对其进行计算,分析出发电机在工作时对能源的消耗以及其能产生的有功功率之间的关系,专业术语称其为“耗量特性”[6]。只有确定了耗量特性的具体数值,才能对发电厂进行合理规划,规定其合理的开启顺序,并对发电设备进行操作,达到最优分配原则。
4.2牛顿-拉夫逊计算法潮流计算原理
设有变量单变量非线性方程

在求解此方程的时候,需要先给出解的近似值x(0) ,它的与真解的误差将满足下列方程式

将上述式子左边的函数在x(0)附近展开成泰勒级数得到:
  如果差值很小,差值的二次及以上阶次的各项均可以省去,于是可以简化成:

这是对于变量的修正量线性方程式(修正方程式),据此可以得到修正量

但是修正后的近似解x(1)与真解仍然存在误差,为了进一步逼近真解,可以一直迭代下去,最终可以得到迭代计算通式:

而迭代过程中的收敛判据为:

由此可见,牛顿-拉夫逊法实质上就是切线法,是逐步线性化的方法。牛顿-拉夫逊计算法不仅用于求解单变量方程,还可以求解多变量非线性代数方程。
设有n个联立的非线性代数方程

分别为各个变量的修正量,使其满足方程组,即

将n个多元函数在初始值附近分别展开成泰勒级数,并略去二次及以上阶次的各项,可以得到牛顿-拉夫逊法的修正方程式

利用高斯消去法或者三角分解法可以解出修正量,然后对初始值近似解进行修正

如此反复迭代,在进行第k+1次迭代时,从而求出修正方程式:

得到修正量

并对各变量进行修正,最终可以表示为

其中,**X **是由n个变量组成的n维矩阵列向量,F (X),是由n个多元函数组成的维向量:J是n*n阶方阵,称为雅可比矩阵。迭代过程一直进行到满足收敛判据

4.3牛顿-拉夫逊直角坐标潮流计算
电力系统节点电压在直角坐标下表示为:

导纳矩阵元素表示为:

n节点电力系统的潮流方程表示为:

对于一个n节点的电力系统,设系统中节点1-m为PQ节点,节点i的功为和,则该节点的功率方程为:

设系统中节点m+1~n-1节点为PV节点,则节点的功率方程为:

由于n节点是平衡节点,其功率是给定,所以不参加迭代。
因此我们可以写出修正方程式:

将上式展开:

或展开为:

过高斯消元法得出对应节点的电压修正量和,然后利用电压修正公式对各电压进行修改,修正过程为:

按上一-次得出的和,重新计算各个节点的不平衡量、,判断是否满足收敛判据如式

如不满足则重新返回上式,继续循环计算,直至满足收敛判据。
迭代完成后,可以计算系统中电路的功率分布,计算公式如下:

五、电力系统有功优化模型
电力系统最优潮流的求解就是在一系列等式和不等式的约束下,对目标函数的最大或最小值的求解,拉格朗日乘数法是求解这一最优解常用的方法。
目标函数:

等式约束条件:

不等式约束条件:

上式中: x为控制变量,指电力系统PQ、PV节点的有功功率
u为状态变量,指节点电压、平衡节点的功率。
在有功优化中的等式约束条件表示功率平衡方程,不等式约束条件表示电压质量和系统安全性能指标。
电力系统有功优化常将能源的消耗最少作为目标函数,也叫作耗量最优,已经确定了系统有功负荷和机组耗量的情况下,单个发电设备的耗量作为其输出有功功率的函数:

系统中所有的发电设备耗量函数为:

对于一个节点的有功功率平衡有:

对于整个系统所有节点:

上式中的分别为第i台发电机节点的输出功率和消耗功率,为总的有功负荷,为总的有功损耗。
不等式约束条件为:

上式中和分别为第i节点有功功率上下限和无功功率上下限,和分别为第i节点的电压上下限和相角上下限。
为了能够在一系列约束条件下求得目标函数的最优解,我们常常将其构造为拉格朗日函数:

上式对求导可得:

所以有:

是上式为有功优化的协调方程式,其中表示网损微增率,由不等式约束和即可求解有功优化相关问题。
六、总结
通过分析得知,电力系统中的有功功率在按计划执行了最优分配后,对于整个电力系统的成本都起到了一定的降低作用,尽管起到的作用可能很微小,但不积跬步无以至千里,对于全国乃至全球的电力系统来说,通过长时间的积累,其总体能节省的能量还是相当可观的。因此,从整体来看,对有功功率进行合理的优化分配是势在必行的,在进行操作时,相应的配套设施要需要同步到位,不能只对有功功率进行优化升级,同样要对周边环境进行考察,让电力系统的升级带动整个企业的发展,带来更好更高的经济效益。
参考文献
[1] 彭衍建,李勇,曹一家. 基于VSC-MTDC的大规模海上风电并网系统协调下垂控制方法[J].电力自动化设备,2016,36(8):16-25.
[2] 郑明忠,张道农,张小易,et al.基于节点集合的PMU优化配置方法[J].电力系统保护与控制,2017,45(13):138-142.
[3] 陈乔,付险锋,丁凯,et al.同步发电机励磁调差系数对电力系统影响分析及其优化配置方法研究[J].湖北电力,2016(12):43-48.
[4] 白龙,孙楚,王娜,et al.一种适用于航空电源变换的新型混合整流电路功率控制[J].中国电机工程学报,2016,36(4):1106-1116.
[5] 陆文甜,林舜江,刘明波.远距离交直流并联输电通道联络线的有功优化分配[J].华南理工大学学报(自然科学版),2017,45(7):16-24.
[6] 曹勇,李培恺,辛焕海.主动配电网实时经济分配的一致性协同控制策略研究[J].机电工程,2017,34(6):633-638.

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值