经典算法题:约瑟夫环

本文介绍了约瑟夫环问题的背景和两种解法:模拟链表法(时间复杂度O(n * m))与数学方法(时间复杂度O(n)),并给出了具体算法实现。通过递推公式解决最后剩余的数字,并以牛客NC132和剑指Offer 62为例进行阐述。
摘要由CSDN通过智能技术生成

问题定义

0,1,···,n-1这n个数字排成一个圆圈,从数字0开始,每次从这个圆圈里删除第m个数字(删除后从下一个数字开始计数)。求出这个圆圈里剩下的最后一个数字。

例如,0、1、2、3、4这5个数字组成一个圆圈,从数字0开始每次删除第3个数字,则删除的前4个数字依次是2、0、4、1,因此最后剩下的数字是3。

解法

1. 模拟链表

该方法时间复杂度为O(n * m)

/**
 * @author 49367
 * @date 2021/4/5 10:47
 */
public class ListNode {
   

    public int val;
    public ListNode next = null;

    public ListNode(int val){
   
        this.val = val;
    }
    public ListNode() {
   }
    public ListNode(int val, ListNode next) 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值