[论文笔记] SCRFD 阅读笔记

本文介绍了Sample and Computation Redistribution for Efficient Face Detection (SCRFD)的技术,旨在解决人脸检测算法效率和准确性的问题。通过样本再分配(SR)策略增加小目标人脸的训练样本,以及计算再分配(CR)方法在模型的不同部分重新分配计算资源,以提高在WIDERFace数据集上的检测性能。实验表明,这种计算资源集中在backbone、尤其是stem+C2+C3部分的分配方式能够实现最佳的检测精度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Sample and Computation Redistribution for Efficient Face Detection (Arxiv 2021)

论文链接:论文链接
论文主页:论文主页
代码链接:代码链接
在这里插入图片描述

动机

  • 大部分的人脸检测算法都缺乏高效性,运行速度非常慢,或者准确率不够高

解决方案

  • 两个方法

    • 样本再分配(SR),它根据基准数据集的统计数据为最需要的阶段增加训练样本
    • 计算再分配 (CR),使用搜索方法在模型的backbone、neck和head之间重新分配计算资源
  • 样本再分配(SR)

    • WIDERFace 中的图片长边固定为 640p 时,大部分 easy 的人脸大于 32×32,大多数 medium 人脸大于 16×16,而在 hard 人脸中,78.93% 的人脸小于32×32,51.85% 的人脸小于16×16,13.36% 的人脸小于8×8;因此如果想要提升 hard 难度的人脸检测率,那么需要在小目标检测上下功夫
      在这里插入图片描述

    • 传统 crop 数据增强方法使用 [0.3,1.0] 的随机大小对原始图片进行裁剪,再缩放至所需大小进行训练;SR采用的是 [0.3,2.0] 的大裁剪策略。使用大裁剪策略后,小人脸(<32×32)的数量明显增加,能显著提升小目标检测的效率。
      在这里插入图片描述

  • 计算再分配(CR)

    • 人脸检测器的自由度

      • backbone stem,三个3×3卷积层,输出通道为 w 0 w_0
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值