Sample and Computation Redistribution for Efficient Face Detection (Arxiv 2021)
动机
- 大部分的人脸检测算法都缺乏高效性,运行速度非常慢,或者准确率不够高
解决方案
-
两个方法:
- 样本再分配(SR),它根据基准数据集的统计数据为最需要的阶段增加训练样本
- 计算再分配 (CR),使用搜索方法在模型的backbone、neck和head之间重新分配计算资源
-
样本再分配(SR)
-
WIDERFace 中的图片长边固定为 640p 时,大部分 easy 的人脸大于 32×32,大多数 medium 人脸大于 16×16,而在 hard 人脸中,78.93% 的人脸小于32×32,51.85% 的人脸小于16×16,13.36% 的人脸小于8×8;因此如果想要提升 hard 难度的人脸检测率,那么需要在小目标检测上下功夫
-
传统 crop 数据增强方法使用 [0.3,1.0] 的随机大小对原始图片进行裁剪,再缩放至所需大小进行训练;SR采用的是 [0.3,2.0] 的大裁剪策略。使用大裁剪策略后,小人脸(<32×32)的数量明显增加,能显著提升小目标检测的效率。
-
-
计算再分配(CR)
-
人脸检测器的自由度:
- backbone stem,三个3×3卷积层,输出通道为 w 0 w_0
-