[论文笔记] SODA小目标综述(西工大)

本文深入探讨了小目标检测的挑战,如信息丢失和噪声特征,并介绍了数据增强、多尺度方法、特征融合、超分辨率和上下文建模等解决方案。提出了两个新数据集SODA-A和SODA-D,同时讨论了各种检测算法和基准,为小目标检测研究提供了全面的综述。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Towards Large-Scale Small Object Detection:Survey and Benchmarks

论文链接:论文链接
主页链接:主页链接

这篇文章需要后续跟踪一下,可能有一些数据集SODA-A和SODA-D等等发布

动机

  • 从小物体的有限和扭曲的信息中学习正确特征表示本来就很困难。解决的办法有如下6种:data-manipulation methods, scale-aware methods, feature-fusion methods, super-resolution methods, context-modeling methods, other approaches
  • 小目标检测缺乏大规模的数据集。因此提出了两个数据集SODA-A(航拍图片)和 SODA-D(交通图片)

1、小目标检测难点

  • 信息丢失。下采样会导致小目标的信息产生大量的丢失。(检测小目标的时候能不能不进行下采样,或者我能够在原图上提取出小目标的区域来减少计算量吗?
  • 噪声特征。小目标的特征很容易被背景、其他物体的特征污染。
  • 边界框扰动容限低。(用一种新的IoU评价规则来处理小目标可以吗,不然小目标的mAP和大目标的mAP不公平在这里插入图片描述

2、小目标检测算法

在这里插入图片描述

数据增强(Data-manipulation methods)

  • 不同尺度的目标之间的数量差异巨大,一般小目标的数量都比较少,因此一个直观的方法是使用
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值