SODA小目标综述(西工大)
Towards Large-Scale Small Object Detection:Survey and Benchmarks
这篇文章需要后续跟踪一下,可能有一些数据集SODA-A和SODA-D等等发布
动机
- 从小物体的有限和扭曲的信息中学习正确特征表示本来就很困难。解决的办法有如下6种:data-manipulation methods, scale-aware methods, feature-fusion methods, super-resolution methods, context-modeling methods, other approaches
- 小目标检测缺乏大规模的数据集。因此提出了两个数据集SODA-A(航拍图片)和 SODA-D(交通图片)
1、小目标检测难点
- 信息丢失。下采样会导致小目标的信息产生大量的丢失。(检测小目标的时候能不能不进行下采样,或者我能够在原图上提取出小目标的区域来减少计算量吗?)
- 噪声特征。小目标的特征很容易被背景、其他物体的特征污染。
- 边界框扰动容限低。(用一种新的IoU评价规则来处理小目标可以吗,不然小目标的mAP和大目标的mAP不公平)
2、小目标检测算法
数据增强(Data-manipulation methods)
- 不同尺度的目标之间的数量差异巨大,一般小目标的数量都比较少,因此一个直观的方法是使用