[论文笔记] BCNet 阅读笔记

Deep Occlusion-Aware Instance Segmentation with Overlapping BiLayers(CVPR 2021)

论文链接:论文链接
代码链接:代码链接

  • 文章的 Related Work 可以当一篇综述,有很多关于 Occlusion Handling 的论文,可以参考
  • Amodal Instance Segmentation:模态实例分割。传统实例分割只能 focus 可见区域,但是模态实例分割可以预测被遮挡的部分

摘要

  • 动机:高度重叠目标难以进行实例分割
  • 方法
    • 将图像建模(解耦)为两个重叠层,并提出双层卷积网络(BCNet),其中顶部的GCN层检测遮挡物体(遮挡者),底部的GCN层推断被部分遮挡的物体(被遮挡者)
    • BCNet 在模态和非模态设置中使用不同的backbone和对象检测器在整体分割性能上实现了一致的收益

引言

  • 原理图
    • BCNet 在 ROI 提取后同时回归 遮挡者 和 被遮挡者,使用两个不同的层将它们的像素进行分组,将目标的边界进行解耦,最后在mask 回归阶段将两者进行 interaction
      在这里插入图片描述
  • 传统方法的局限
    • 传统方法通过 NMS 或 后处理 来解决相邻物体之间的掩码冲突,因此,它们的结果是 沿边界过度平滑相邻物体的差别很小
    • ROI 中的感受野可以观察到属于同一类别的多个物体,因此当 遮挡者 的一部分被判定在 被遮挡者 中时,传统的 mask head 不能解决这种问题,导致误差
      在这里插入图片描述
  • BCNet 对比其他 mask head 的结构
    在这里插入图片描述

Occlusion-Aware Instance Segmentation(遮挡感知实例分割)

  • 网络结构图

在这里插入图片描述

  • GCN 相关
    在这里插入图片描述

    • 给定邻接图 g = < V , E > \mathcal g=<\mathcal V, \mathcal E> g=<V,E>,图卷积操作定义如下:
      Z = σ ( A X W g ) + X \bold Z=\sigma (\bold A \bold X \bold W_g)+\bold X Z=σ(AXWg)+X
      其中 X ∈ R N × K \bold X\in R^{N×K} XRN×K 是输入特征, N = H × W N=H×W N=H×W 是 ROI 区域中的像素数量, K K K 是每一个 node(每个像素就是一个 node)的特征维度, A ∈ R N × N \bold A\in R^{N×N} AR
  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值