矩阵的相似
- 定义:若 B = P − 1 A P B=P^{-1}AP B=P−1AP,则称矩阵A与B相似,记做 A ∼ B A\sim B A∼B
- 相似可以推出等价,但等价不一定相似
- 性质:
可逆时有 A − 1 ∼ B − 1 A^{-1}\sim B^{-1} A−1∼B−1
∣ A ∣ = ∣ B ∣ \left|A\right|=\left|B\right| ∣A∣=∣B∣
A ∼ B → f ( A ) ∼ f ( B ) , f 为 多 项 式 A\sim B\rightarrow f(A) \sim f(B),f为多项式 A∼B→f(A)∼f(B),f为多项式 - 矩阵的特征值和特征向量: A α = λ α A\alpha=\lambda\alpha Aα=λα
特征值和特征向量的求法
步骤:
(i) 解
∣
A
−
λ
E
∣
=
0
\left|A-\lambda E\right|=0
∣A−λE∣=0,求出
λ
\lambda
λ的值,得到特征值
(ii) 求
(
A
−
λ
E
)
=
O
(A-\lambda E)=\Omicron
(A−λE)=O 这个齐次线性方程组的基础解系,得到特征向量
假设有k个特征值,则必定有大于等于k个特征向量
特征值和特征向量的性质
- 不同特征值的特征向量线性无关
- 相似矩阵有相同的特征值
- 特征值的公式:(特征值有着非常好的性质)
- 特征值和矩阵的关系公式(韦达公式得到)
特征值之积是行列式的值;特征值之和是矩阵的迹
一般矩阵的相似对角形
- 能够与对角形相似的等价条件:有n个线性无关的特征向量(有n个线性无关的向量得到了伸缩)
解释:相似对角形可以解释为某一线性空间的基向量的伸缩,有n个特征向量说明有n个向量伸缩了,把这n个特征向量看成新坐标系的基(也就是把特征向量组合成变换矩阵 P P P),就找到了相似对角形。 - 判断一个矩阵能否与一个对角形相似?求特征值,再求特征向量,看特征向量的个数。
- 矩阵相似对角化的步骤:
(i)求特征值
(ii)求特征向量
(iii)把特征向量组合成 P P P,特征值组合成对角阵即可
实对称矩阵特征值和特征向量的性质
- 实对称矩阵的定义: A T = A A^T=A AT=A
- 实对称矩阵的性质:
特征值都是实数
不同特征值所对应的特征向量必定正交
实对称矩阵一定能够相似对角化(一定有n个线性无关的向量得到了伸缩)
实对称矩阵的相似对角化
- 实对称矩阵不仅一定可以与对角阵相似,还可以与对角阵正交相似
- 正交相似:存在正交矩阵 Q Q Q,使得 B = Q − 1 A Q B=Q^{-1}AQ B=Q−1AQ,则B与A正交相似
- 如何进行实对称矩阵的正交相似对角化?步骤:
(i)求特征值
(ii)求特征向量
(iii)施密特正交化