相似对角形

矩阵的相似

  1. 定义:若 B = P − 1 A P B=P^{-1}AP B=P1AP,则称矩阵A与B相似,记做 A ∼ B A\sim B AB
  2. 相似可以推出等价,但等价不一定相似
  3. 性质
    可逆时有 A − 1 ∼ B − 1 A^{-1}\sim B^{-1} A1B1
    ∣ A ∣ = ∣ B ∣ \left|A\right|=\left|B\right| A=B
    A ∼ B → f ( A ) ∼ f ( B ) , f 为 多 项 式 A\sim B\rightarrow f(A) \sim f(B),f为多项式 ABf(A)f(B)f
  4. 矩阵的特征值和特征向量: A α = λ α A\alpha=\lambda\alpha Aα=λα

特征值和特征向量的求法

步骤:
(i) 解 ∣ A − λ E ∣ = 0 \left|A-\lambda E\right|=0 AλE=0,求出 λ \lambda λ的值,得到特征值
(ii) 求 ( A − λ E ) = O (A-\lambda E)=\Omicron (AλE)=O 这个齐次线性方程组的基础解系,得到特征向量
假设有k个特征值,则必定有大于等于k个特征向量

特征值和特征向量的性质

  1. 不同特征值的特征向量线性无关
  2. 相似矩阵有相同的特征值
  3. 特征值的公式:(特征值有着非常好的性质)
    在这里插入图片描述
  4. 特征值和矩阵的关系公式(韦达公式得到)
    在这里插入图片描述
    特征值之积是行列式的值;特征值之和是矩阵的迹

一般矩阵的相似对角形

  1. 能够与对角形相似的等价条件:有n个线性无关的特征向量(有n个线性无关的向量得到了伸缩)
    解释:相似对角形可以解释为某一线性空间的基向量的伸缩,有n个特征向量说明有n个向量伸缩了,把这n个特征向量看成新坐标系的基(也就是把特征向量组合成变换矩阵 P P P),就找到了相似对角形。
  2. 判断一个矩阵能否与一个对角形相似?求特征值,再求特征向量,看特征向量的个数。
  3. 矩阵相似对角化的步骤:
    (i)求特征值
    (ii)求特征向量
    (iii)把特征向量组合成 P P P,特征值组合成对角阵即可

实对称矩阵特征值和特征向量的性质

  1. 实对称矩阵的定义: A T = A A^T=A AT=A
  2. 实对称矩阵的性质:
    特征值都是实数
    不同特征值所对应的特征向量必定正交
    实对称矩阵一定能够相似对角化(一定有n个线性无关的向量得到了伸缩)

实对称矩阵的相似对角化

  1. 实对称矩阵不仅一定可以与对角阵相似,还可以与对角阵正交相似
  2. 正交相似:存在正交矩阵 Q Q Q,使得 B = Q − 1 A Q B=Q^{-1}AQ B=Q1AQ,则B与A正交相似
  3. 如何进行实对称矩阵的正交相似对角化?步骤:
    (i)求特征值
    (ii)求特征向量
    (iii)施密特正交化
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值