矩阵的相似
定义:设
A,B
A
,
B
是两个
n
n
阶方阵,若存在阶可逆矩阵
P
P
,使得,则称
A
A
相似于,记成
A∼B
A
∼
B
矩阵相似是一种等价关系
(1)
(
1
)
A∼A
A
∼
A
(反身性)
(2)
(
2
)
若
A∼B
A
∼
B
,则
B∼A
B
∼
A
(对称性)
(3)
(
3
)
若
A∼B,B∼C
A
∼
B
,
B
∼
C
则
A∼C
A
∼
C
(传递性)
相似矩阵的性质
(1)
(
1
)
若
A∼B
A
∼
B
则有:
1∘:
1
∘
:
r(A)=r(B)
r
(
A
)
=
r
(
B
)
;
2∘:
2
∘
:
|A|=|B|
|
A
|
=
|
B
|
;
3∘:
3
∘
:
|λE−A|=|λE−B|
|
λ
E
−
A
|
=
|
λ
E
−
B
|
;
4∘:
4
∘
:
A,B
A
,
B
有相同的特征值
(2)
(
2
)
若
A∼B
A
∼
B
则有:
若
Am∼Bm;f(A)∼f(B)
A
m
∼
B
m
;
f
(
A
)
∼
f
(
B
)
(其中
f(x)
f
(
x
)
是多项式)
(3)
(
3
)
若
A∼B
A
∼
B
且
A
A
可逆,
则(其中
f(x)
f
(
x
)
是多项式)
(4)
(
4
)
若
P−1A1P=B1
P
−
1
A
1
P
=
B
1
,
P−1A2P=B2
P
−
1
A
2
P
=
B
2
,
则
P−1A1A2P=P−1A1PP−1A2P
P
−
1
A
1
A
2
P
=
P
−
1
A
1
P
P
−
1
A
2
P
即
A1A2∼B1B2
A
1
A
2
∼
B
1
B
2
(5)
(
5
)
P−1(k1A1+k2A2)P=k1P−1A1P+k2P−1A2P
P
−
1
(
k
1
A
1
+
k
2
A
2
)
P
=
k
1
P
−
1
A
1
P
+
k
2
P
−
1
A
2
P
对称矩阵的对角化(方阵)
对称矩阵的一些性质:
1:对称矩阵的特征值为实数
2:设
λ1
λ
1
和
λ2
λ
2
是对称矩阵
A
A
的两个特征值,,
p2
p
2
是对应的特征向量,若
λ1≠λ2
λ
1
≠
λ
2
,则
p1
p
1
和
p2
p
2
正交
定理:
设
A
A
为阶对称矩阵,则必有正交矩阵
P
P
使得,其中
Λ
Λ
是以
A
A
的个特征值为对角元的对角矩阵
推论:
设
A
A
为阶对称矩阵,
λ
λ
是
A
A
的特征方程的重根,则矩阵
A−λE
A
−
λ
E
的秩
R(A−λE)=n−k
R
(
A
−
λ
E
)
=
n
−
k
,从而对应的特征值
λ
λ
恰好有
k
k
个线性无关的特征向量。
矩阵可以对角化的条件
若存在可逆矩阵,使得
P−1AP=Λ
P
−
1
A
P
=
Λ
,其中
Λ
Λ
是对角矩阵,则称
A
A
为可相似对角化,记,称
Λ
Λ
是
A
A
的相似标准型。
n
n
阶矩阵
⇔
⇔
有
n
n
个线性无关的特征向量
矩阵
A
A
的属于不同的特征值的特征向量线性无关,若阶矩阵
A
A
有个不同的特征值,则
A
A
有个线性无关的特征向量,于是
A∼Λ
A
∼
Λ
(3)
(
3
)
设
λ0
λ
0
是
A
A
的重特征值,则
A
A
对应于的线性无关的特征向量的个数小于等于
r
r
.
矩阵相似于对角矩阵
⇔
⇔
A
A
的对应于每个重特征值都有
ri
r
i
个线性无关的特征向量。
实对称矩阵必可相似于对角矩阵
(1)
(
1
)
A
A
是实对称矩阵,则的特征值是实数,特征向量是实向量
(2)
(
2
)
实对称矩阵
A
A
的属于不同特征值的特征向量相互正交
实对称矩阵
A
A
必相似于对角矩阵,即必有个线性无关的特征向量
ξ1,ξ2,⋯,ξn
ξ
1
,
ξ
2
,
⋯
,
ξ
n
,即必有可逆矩阵
P=[ξ1,ξ2,⋯,ξn]
P
=
[
ξ
1
,
ξ
2
,
⋯
,
ξ
n
]
使得
P−1AP=Λ
P
−
1
A
P
=
Λ
,其中
Λ=dig(λ1,λ2,⋯,λn)
Λ
=
d
i
g
(
λ
1
,
λ
2
,
⋯
,
λ
n
)
,且存在正交矩阵
Q
Q
,使得,故
A
A
正交相似于.
奇异值分解(不是方阵)
假设
A
A
是一个,其中
m>n
m
>
n
(这个假设只是为了方便,如果
m<n
m
<
n
,所有结论依然成立)。
我们给出一种方法,确定
A
A
是如何接近一个较小秩的矩阵。
这种方法包括将分解为一个乘积
UΣVT
U
Σ
V
T
,其中
U
U
是一个的正交矩阵,
V
V
是一个的正交矩阵,
Σ
Σ
是一个
m×n
m
×
n
的矩阵,其对角下的所有元素为
0
0
,且对角线元素满足
采用这种因式分解得到的 σi σ i 是唯一的,并且称 A A 的奇异值。
因式分解称为 A A <script type="math/tex" id="MathJax-Element-134">A</script>的奇异值分解