李宏毅2021机器学习笔记(十)

本文探讨了深度学习为何优于浅层学习,通过复习深度学习中的分段线性拟合和Sigmoid函数,阐述了深度模型如何用更少的参数实现复杂的曲线拟合。实验表明,深度学习在参数效率方面远超浅层模型。
摘要由CSDN通过智能技术生成

为什么深度学习好?

回忆一下之前讲过的复杂度的问题

H大:虽然我Loss-all会很小,模型很精确,但是Loss-train和Loss-all的差距就很大

H小:Loss都很大,但是train和all差距小!!P不等式得出

 

如果我给出一个H,大小恰当,成员数目恰当,就可以完美平衡优缺点

复习一下之前的Deep Lear ing

为了拟合曲线,我们先引出Piecewise Linear(分段线性拟合)

而这些绿色的线条怎么拟合?? 

用函数拟合,分段拟合,叠加 。这些函数也叫Hard Sigmoid

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值