柯布-道格拉斯效用函数下的pcr抽卡策略

本文通过柯布-道格拉斯效用函数分析了在宝石有限的情况下,如何在特定出货率的池子中进行最优化抽卡策略。研究发现,出货率越低,为了达到期望效用最大,所需抽卡次数和预算反而更高。结论强调了在低出货率池子中,消费者对抽取次数的预期和容忍度增加,但单次抽卡决策应考虑止损。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

背景

效用函数

U ( E , D ) = [ 1 D + 1 ] α [ min ⁡ ( E , 1 ) ] 1 − α α 表 示 对 风 险 的 厌 恶 程 度 U(E,D)=[\frac1{D+1}]^\alpha[\min(E,1)]^{1-\alpha}\\\alpha表示对风险的厌恶程度 U(E,D)=[D+11]α[min(E,1)]1αα

风险资产表示

已 知 单 次 抽 卡 时 , 出 货 率 为 p , 沉 船 率 q = 1 − p 则 n 次 抽 卡 中 : 出 货 期 望 E = n p 出 货 方 差 D = n p q 不 妨 设 150 宝 石 为 1 单 位 价 格 则 预 算 约 束 为 I = n 消 去 参 数 n , 我 们 得 到 D = q E 其 中 每 一 个 确 定 的 点 ( E 0 , D 0 ) 都 是 给 定 预 算 I 0 下 的 期 望 和 方 差 以 p = 0.35 % 为 例 , 绘 图 如 下 : \begin{aligned} &已知单次抽卡时,出货率为p,沉船率q=1-p\\ &则n次抽卡中:\\ &出货期望E=np\\ &出货方差D=npq\\ &不妨设150宝石为1单位价格\\ &则预算约束为I=n\\ &消去参数n,我们得到D=qE\\ &其中每一个确定的点(E_0,D_0)都是给定预算I_0下的期望和方差\\ &以p=0.35\%为例,绘图如下:\\ \end{aligned} pq=1pn

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值