实分析作业-第五周

  1. X , Y ∈ C n \mathbf X,\mathbf Y\in\mathbb C^n X,YCn,定义 ⟨ X , Y ⟩ = ∑ k = 1 n x k y ‾ k , ∣ ∣ X ∣ ∣ = ⟨ X , X ⟩ \langle\mathbf{X,Y}\rangle=\sum\limits_{k=1}^nx_k\overline y_k,||\mathbf X||=\sqrt{\langle\mathbf{X,X}\rangle} X,Y=k=1nxkyk,X=X,X ,证明: ∣ ⟨ X , Y ⟩ ∣ ≤ ∣ ∣ X ∣ ∣ ⋅ ∣ ∣ Y ∣ ∣ |\langle\mathbf{X,Y}\rangle|\le||\mathbf X||\cdot||\mathbf Y|| X,YXY
    证明 设 x k = a k e i α k , y k = b k e i β k 则 原 式 化 为 ∣ ∑ k = 1 n a k b k e i ( α k − β k ) ∣ 2 ≤ ∣ ∑ k = 1 n a k 2 ∣ ∣ ∑ k = 1 n b k 2 ∣ ( ∑ k = 1 n a k b k ) 2 ≤ ( ∑ k = 1 n a k 2 ) ( ∑ k = 1 n b k 2 ) 由 实 数 上 的 柯 西 − 施 瓦 茨 不 等 式 可 证 。 \begin{aligned} &设x_k=a_ke^{i\alpha_k},y_k=b_ke^{i\beta_k}\\ &则原式化为|\sum_{k=1}^na_kb_ke^{i(\alpha_k-\beta_k)}|^2\le|\sum_{k=1}^na_k^2||\sum_{k=1}^nb_k^2|\\ &(\sum_{k=1}^na_kb_k)^2\le(\sum_{k=1}^na_k^2)(\sum_{k=1}^nb_k^2)\\ &由实数上的柯西-施瓦茨不等式可证。 \end{aligned} xk=akeiαk,yk=bkeiβkk=1nakbkei(αkβk)2k=1nak2k=1nbk2(k=1nakbk)2(k=1nak2)(k=1nbk2)西
  2. 证明:若 f : [ 0 , 2 π ] ↦ R f:[0,2\pi]\mapsto\mathbb R f:[0,2π]R是可积函数,且 f ^ ( n ) = 1 2 π ∫ 0 2 π f ( x ) e − i n x d x , ∣ ∣ f ∣ ∣ 2 = 1 2 π ∫ 0 2 π ∣ f ( x ) ∣ 2 d x \hat f(n)=\frac1{2\pi}\int_0^{2\pi}f(x)e^{-inx}dx,||f||^2=\frac1{2\pi}\int_0^{2\pi}|f(x)|^2dx f^(n)=2π102πf(x)einxdx,f2=2π102πf(x)2dx,则有 ∣ ∣ f ∣ ∣ 2 = ∑ n = − ∞ + ∞ ∣ f ^ ( n ) ∣ 2 ||f||^2=\sum\limits_{n=-\infty}^{+\infty}|\hat f(n)|^2 f2=n=+f^(n)2
    证明 可 知 f ( x ) = ∑ n = − ∞ + ∞ f ^ ( n ) e i n x 故 ∣ ∣ f ∣ ∣ 2 = 1 2 π ∫ 0 2 π ∣ ∑ n = − ∞ + ∞ f ^ ( n ) e i n x ∣ 2 d x = 1 4 π 2 ∫ 0 2 π ∑ n = − ∞ + ∞ ∣ ∫ 0 2 π f ( y ) e − i n y d y e i n x ∣ 2 d x = 1 2 π ∫ 0 2 π lim ⁡ n → ∞ ∣ ( D n ∗ f ) ( x ) ∣ 2 d x = 1 2 π ∫ 0 2 π ∣ lim ⁡ n → ∞ ( D n ∗ f ) ( x ) ∣ 2 d x = 1 2 π ∫ 0 2 π ∣ f ( x ) ∣ 2 d x ∑ n = − ∞ + ∞ ∣ f ^ ( n ) ∣ 2 = ( 1 2 π ) 2 ∑ n = − ∞ + ∞ ∣ ∫ 0 2 π f ( x ) e − i n x d x ∣ 2 \begin{aligned} 可知f(x)=&\sum\limits_{n=-\infty}^{+\infty}\hat f(n)e^{inx}\\ 故||f||^2=&\frac1{2\pi}\int_0^{2\pi}|\sum_{n=-\infty}^{+\infty}\hat f(n)e^{inx}|^2dx\\ =&\frac1{4\pi^2}\int_0^{2\pi}\sum_{n=-\infty}^{+\infty}|\int_0^{2\pi}f(y)e^{-iny}dye^{inx}|^2dx\\ =&\frac1{2\pi}\int_0^{2\pi}\lim_{n\to\infty}|(D_n*f)(x)|^2dx\\ =&\frac1{2\pi}\int_0^{2\pi}|\lim_{n\to\infty}(D_n*f)(x)|^2dx\\ =&\frac1{2\pi}\int_0^{2\pi}|f(x)|^2dx\\\\ &\sum\limits_{n=-\infty}^{+\infty}|\hat f(n)|^2\\ =&(\frac1{2\pi})^2\sum\limits_{n=-\infty}^{+\infty}|\int_0^{2\pi}f(x)e^{-inx}dx|^2 \end{aligned} f(x)=f2======n=+f^(n)einx2π102πn=+f^(n)einx2dx4π2102πn=+02πf(y)einydyeinx2dx2π102πnlim(Dnf)(x)2dx2π102πnlim(Dnf)(x)2dx2π102πf(x)2dxn=+f^(n)2(2π1)2n=+02πf(x)einxdx2
  3. 证明:若 ⟨ X , X ⟩ = ∣ ∣ X ∣ ∣ 2 \langle\mathbf{X,X}\rangle=||\mathbf X||^2 X,X=X2,且 ⟨ X , Y ⟩ = ⟨ Y , X ⟩ ‾ \langle\mathbf{X,Y}\rangle=\overline{\langle\mathbf{Y,X}\rangle} X,Y=Y,X,则有: 4 ⟨ X , Y ⟩ = ∣ ∣ X + Y ∣ ∣ 2 − ∣ ∣ X − Y ∣ ∣ 2 + i ( ∣ ∣ X + i Y ∣ ∣ 2 − ∣ ∣ X − i Y ∣ ∣ 2 ) 4\langle\mathbf{X,Y}\rangle=||\mathbf{X+Y}||^2-||\mathbf{X-Y}||^2+i(||\mathbf X+i\mathbf Y||^2-||\mathbf X-i\mathbf Y||^2) 4X,Y=X+Y2XY2+i(X+iY2XiY2)
    证明 等 式 左 边 实 部 = ⟨ X + Y , X + Y ⟩ − ⟨ X − Y , X − Y ⟩ = ⟨ X , X + Y ⟩ + ⟨ Y , X + Y ⟩ − ( ⟨ X , X − Y ⟩ − ⟨ Y , X − Y ⟩ ) = ⟨ Y , X ⟩ ‾ + ⟨ X , X ⟩ ‾ + ⟨ X , Y ⟩ ‾ + ⟨ Y , Y ⟩ ‾ − ( ⟨ X , X ⟩ ‾ − ⟨ Y , X ⟩ ‾ − ⟨ X , Y ⟩ ‾ + ⟨ Y , Y ⟩ ‾ ) = 2 ⟨ X , Y ⟩ + 2 ⟨ Y , X ⟩ 虚 部 = ⟨ X + i Y , X + i Y ⟩ − ⟨ X − i Y , X − i Y ⟩ = 2 ⟨ X , i Y ⟩ + 2 ⟨ i Y , X ⟩ = 2 ⟨ i Y , X ⟩ ‾ + 2 i ⟨ Y , X ⟩ = − 2 i ⟨ X , Y ⟩ + 2 i ⟨ Y , X ⟩ ∴ 等 式 左 边 = 2 ⟨ X , Y ⟩ + 2 ⟨ Y , X ⟩ + i ( − 2 i ⟨ X , Y ⟩ + 2 i ⟨ Y , X ⟩ ) = 4 ⟨ X , Y ⟩ \begin{aligned} 等式左边实部=&\langle\mathbf{X+Y,X+Y}\rangle-\langle\mathbf{X-Y,X-Y}\rangle\\ =&\langle\mathbf{X,X+Y}\rangle+\langle\mathbf{Y,X+Y}\rangle-(\langle\mathbf{X,X-Y}\rangle-\langle\mathbf{Y,X-Y}\rangle)\\ =&\overline{\langle\mathbf{Y,X}\rangle}+\overline{\langle\mathbf{X,X}\rangle}+\overline{\langle\mathbf{X,Y}\rangle}+\overline{\langle\mathbf{Y,Y}\rangle}\\ &-(\overline{\langle\mathbf{X,X}\rangle}-\overline{\langle\mathbf{Y,X}\rangle}-\overline{\langle\mathbf{X,Y}\rangle}+\overline{\langle\mathbf{Y,Y}\rangle})\\ =&2\langle\mathbf{X,Y}\rangle+2\langle\mathbf{Y,X}\rangle\\ 虚部=&\langle\mathbf X+i\mathbf Y,\mathbf X+i\mathbf Y\rangle-\langle\mathbf X-i\mathbf Y,\mathbf X-i\mathbf Y\rangle\\ =&2\langle\mathbf X,i\mathbf Y\rangle+2\langle i\mathbf Y,\mathbf X\rangle\\ =&2\overline{\langle i\mathbf Y,\mathbf X\rangle}+2i\langle\mathbf{Y,X}\rangle\\ =&-2i\langle\mathbf{X,Y}\rangle+2i\langle\mathbf{Y,X}\rangle\\ \therefore等式左边=&2\langle\mathbf{X,Y}\rangle+2\langle\mathbf{Y,X}\rangle+i(-2i\langle\mathbf{X,Y}\rangle+2i\langle\mathbf{Y,X}\rangle)\\ =&4\langle\mathbf{X,Y}\rangle \end{aligned} ==========X+Y,X+YXY,XYX,X+Y+Y,X+Y(X,XYY,XY)Y,X+X,X+X,Y+Y,Y(X,XY,XX,Y+Y,Y)2X,Y+2Y,XX+iY,X+iYXiY,XiY2X,iY+2iY,X2iY,X+2iY,X2iX,Y+2iY,X2X,Y+2Y,X+i(2iX,Y+2iY,X)4X,Y
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值