学生党 白嫖之GPU Google colab 训练深度学习模型

本文介绍了一名学生如何利用Google Colab免费获取GPU资源,进行深度学习模型的训练,特别是针对YOLOv5口罩检测模型的训练。详细步骤包括Chrome的准备、Google Drive的设置以及在Colab中进行GPU选择和代码测试。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

白嫖GPU之Google colab

前言:本人是一名穷且孤单的大学秃头生,跟着老师学习的是计算机视觉领域,学习目标检测到目标跟踪已经有一年的时间了,大多数都是在做论文阅读,很少有机会去实战(因为穷,买不起好的电脑,租不起服务器,实验室也不给资金哈哈哈)。直到近日我才偶然在某站上了解到了白嫖GPU的神器google colab,并且成功实现了yolov5口罩检测的训练(实测,很快,啊!)
写此博客以做记录和分享!

实现:YOLOv5实现口罩检测训练
数据集:百度网盘mask数据集
提取码:kw87
YoloV5:github地址

Google Chrome准备

我们所用的google colaboratory以及google drive均是源于谷歌旗下,所以我们需要先下载google Chrome浏览器(这里可以直接从官网下载,很简单,几乎傻瓜式安装即可)
这里我们需要下载谷歌官方的谷歌助手,或者是其他的谷歌浏览助手,这样我们才能够访问谷歌内部的网站,当然如果有些大佬强的话,可以直接搞一手国外的VPN,俗称FQ。
还有,大家要注册一个谷歌账号(后续步骤会用到)
这里可能会出

参考资源链接:[深度学习必备:免费使用GPU](https://wenku.csdn.net/doc/645320dcea0840391e76ead5?utm_source=wenku_answer2doc_content) Google Colab提供了免费的GPU资源,包括NVIDIA 1080Ti,这对于学习深度学习和进行实验性训练非常有帮助。为了在Google Colab上配置并使用NVIDIA 1080Ti GPU,你需要遵循以下步骤: 首先,创建一个新的Colab笔记本或者打开你已经有的笔记本。在笔记本的顶部菜单中,找到并点击“运行时”选项,然后选择“更改运行时类型”。在弹出的界面中,你会看到硬件加速器的选项。在此选项中选择“GPU”作为硬件加速器类型。点击保存后,Colab会重启运行环境并连接到GPU资源。 接下来,你可以开始安装深度学习框架,比如TensorFlow或PyTorch。通过在代码单元格中输入以下命令来安装TensorFlow: ``` !pip install tensorflow ``` 或者安装PyTorch: ``` !pip install torch torchvision torchaudio ``` 安装完成后,你可以编写深度学习代码并开始训练模型。下面是一个简单的TensorFlow代码示例,用于构建和训练一个简单的神经网络模型: ``` import tensorflow as tf # 构建模型 model = tf.keras.Sequential([ tf.keras.layers.Flatten(input_shape=(28, 28)), tf.keras.layers.Dense(128, activation='relu'), tf.keras.layers.Dropout(0.2), tf.keras.layers.Dense(10, activation='softmax') ]) ***pile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) # 加载数据集 (x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data() # 归一化数据 x_train, x_test = x_train / 255.0, x_test / 255.0 # 训练模型 model.fit(x_train, y_train, epochs=5) # 评估模型 model.evaluate(x_test, y_test, verbose=2) ``` 通过这些步骤,你就可以在Colab上使用NVIDIA 1080Ti GPU进行深度学习训练了。如果希望深入了解Colab的其他功能和高级用法,可以参考《深度学习必备:免费使用GPU》一书,该书详细介绍了如何利用Colab进行深度学习项目,并解决可能遇到的问题。 参考资源链接:[深度学习必备:免费使用GPU](https://wenku.csdn.net/doc/645320dcea0840391e76ead5?utm_source=wenku_answer2doc_content)
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值