GPU之于深度学习
GPU是一种特殊的处理器专用于高效地处理并行计算任务。GPU特别在深度学习中广泛使用,是因为深度学习算法涉及大量的矩阵操作,并且需要巨大的算力。
深度学习模型由许多相互连接的层组成,这些层对大量数据执行计算。 GPU 可以并行处理这些计算,同时处理许多数据点,从而显着加快训练过程。相比之下,CPU(中央处理器)针对顺序处理进行了优化,在并行计算任务方面不如 GPU 高效。
在深度学习中使用 GPU 显着提高了训练深度神经网络的速度和效率,从而能够开发更复杂和精密的模型。许多深度学习框架,例如 TensorFlow、PyTorch 和 Keras,都设计为在 GPU 上运行并利用其并行计算能力。
如果我们没有GPU怎么办
但是如果我们的计算机内没有GPU又想学习深度学习建模,我们该怎么办呢?
Google Colab给我们提供了方案。
Google Colab提供了免费的且还不错的GPU。
那该如何白嫖到免费的GPU呢?
1. 登录Google Colab
首先登陆Google Colab(https://colab.research.google.com/<