证明:二阶行列式和三阶行列式的几何意义的证明
今天突发奇想去复习线性代数(主要是看数值分析发现自己线代忘得差不多了),然后就突然看见一句话,说是二阶行列式的几何意义就是其平行四边形的面积,三阶行列式的几何意义是其六面体的体积,尝试证明
二阶行列式
- 直观证明
如图可见,由于平行四边形的定义,面积由底边和底边所对应的高决定,因此在下图平移过程中,蓝色和灰色的平行四边形的面积适中保持不变的,移动到合适位置时,可以显而易见的看到 以(a,b)和(c,d)为边的平行四边形是 以(a,0)和(0,d)为底边的长方形 与 以(c,0)和(0,b)为底边的长方形 的面积之差。
图片来源 Matrix67: The Aha Moments - 算式证明:平行四边形面积S =
a
b
→
×
c
d
→
\overrightarrow{ab} \times\overrightarrow{cd}
ab×cd =
∣
a
b
→
∣
∣
c
d
→
∣
|\overrightarrow{ab} ||\overrightarrow{cd}|
∣ab∣∣cd∣
s
i
n
θ
sin\theta
sinθ =
a
d
−
b
c
ad-bc
ad−bc ?
由于 a b → ⋅ c d → \overrightarrow{ab} \cdot\overrightarrow{cd} ab⋅cd = ∣ a b → ∣ ∣ c d → ∣ |\overrightarrow{ab} ||\overrightarrow{cd}| ∣ab∣∣cd∣ c o s θ cos\theta cosθ,即 c o s θ cos\theta cosθ = a b → ⋅ c d → ∣ a b → ∣ ∣ c d → ∣ \frac{\overrightarrow{ab} \cdot\overrightarrow{cd}}{|\overrightarrow{ab} ||\overrightarrow{cd}|} ∣ab∣∣cd∣ab⋅cd,即 s i n θ sin\theta sinθ = 1 − c o s 2 θ \sqrt{1-cos^2\theta} 1−cos2θ = 1 − ( a b → ⋅ c d → ∣ a b → ∣ ∣ c d → ∣ ) 2 \sqrt{1-(\frac{\overrightarrow{ab} \cdot\overrightarrow{cd}}{|\overrightarrow{ab} ||\overrightarrow{cd}|})^2} 1−(∣ab∣∣cd∣ab⋅cd)2
试证明 S = ∣ a b → ∣ ∣ c d → ∣ |\overrightarrow{ab} ||\overrightarrow{cd}| ∣ab∣∣cd∣ s i n θ { 1 } sin\theta\{1\} sinθ{1}= a d − b c { 2 } ad-bc\{2\} ad−bc{2}?
式 { 1 } \{1\} {1}可以进一步化为 ∣ a b → ∣ ∣ c d → ∣ 1 − c o s 2 θ |\overrightarrow{ab} ||\overrightarrow{cd}|\sqrt{1-cos^2\theta} ∣ab∣∣cd∣1−cos2θ = ∣ a b → ∣ ∣ c d → ∣ 1 − ( a b → ⋅ c d → ∣ a b → ∣ ∣ c d → ∣ ) 2 |\overrightarrow{ab} ||\overrightarrow{cd}|\sqrt{1-(\frac{\overrightarrow{ab} \cdot\overrightarrow{cd}}{|\overrightarrow{ab} ||\overrightarrow{cd}|})^2} ∣ab∣∣cd∣1−(∣ab∣∣cd∣ab⋅cd)2
式 { 1 } \{1\} {1},式 { 2 } \{2\} {2}同时平方
式 { 1 } = ( ∣ a b → ∣ ∣ c d → ∣ 1 − ( a b → ⋅ c d → ∣ a b → ∣ ∣ c d → ∣ ) 2 ) 2 = ( a 2 + b 2 c 2 + d 2 1 − ( a b → ⋅ c d → ∣ a b → ∣ ∣ c d → ∣ ) 2 ) 2 = ( a 2 + b 2 c 2 + d 2 1 − ( a c + b d a 2 + b 2 c 2 + d 2 ) 2 ) 2 = ( a 2 + b 2 c 2 + d 2 1 − ( a c + b d ) 2 ( a 2 + b 2 ) ( c 2 + d 2 ) ) 2 = ( ( a 2 + b 2 ) ( c 2 + d 2 ) ( 1 − ( a c + b d ) 2 ( a 2 + b 2 ) ( c 2 + d 2 ) ) ) 2 = ( ( a 2 + b 2 ) ( c 2 + d 2 ) − ( a c + b d ) 2 ) 2 = ( ( a 2 c 2 + a 2 d 2 + b 2 c 2 + b 2 d 2 ) − ( a 2 c 2 + 2 a b c d + b 2 d 2 ) ) 2 = ( a 2 d 2 + b 2 c 2 − 2 a b c d ) 2 = ( ( a d − b c ) 2 ) 2 = ( a d − b c ) 2 = 式 { 2 } \begin{aligned} 式\{1\}&= (|\overrightarrow{ab} ||\overrightarrow{cd}|\sqrt{1-(\frac{\overrightarrow{ab} \cdot\overrightarrow{cd}}{|\overrightarrow{ab} ||\overrightarrow{cd}|})^2})^2\\ &=({\sqrt{a^2+b^2}}{\sqrt{c^2+d^2}}\sqrt{1-(\frac{\overrightarrow{ab} \cdot\overrightarrow{cd}}{|\overrightarrow{ab} ||\overrightarrow{cd}|})^2})^2 \\ &=({\sqrt{a^2+b^2}}{\sqrt{c^2+d^2}}\sqrt{1-(\frac{ac+bd}{{\sqrt{a^2+b^2}}{\sqrt{c^2+d^2}}})^2})^2\\ &=({\sqrt{a^2+b^2}}{\sqrt{c^2+d^2}}\sqrt{1-\frac{(ac+bd)^2}{(a^2+b^2)(c^2+d^2)}})^2\\ &=(\sqrt{(a^2+b^2)(c^2+d^2)(1-\frac{(ac+bd)^2}{(a^2+b^2)(c^2+d^2)})})^2\\ &=(\sqrt{(a^2+b^2)(c^2+d^2)-(ac+bd)^2})^2\\ &=(\sqrt{(a^2c^2+a^2d^2+b^2c^2+b^2d^2)-(a^2c^2+2abcd+b^2d^2)})^2\\ &=(\sqrt{a^2d^2+b^2c^2-2abcd})^2\\ &=(\sqrt{(ad-bc)^2})^2 = (ad-bc)^2 = 式\{2\} \end{aligned} 式{1}=(∣ab∣∣cd∣1−(∣ab∣∣cd∣ab⋅cd)2)2=(a2+b2c2+d21−(∣ab∣∣cd∣ab⋅cd)2)2=(a2+b2c2+d21−(a2+b2c2+d2ac+bd)2)2=(a2+b2c2+d21−(a2+b2)(c2+d2)(ac+bd)2)2=((a2+b2)(c2+d2)(1−(a2+b2)(c2+d2)(ac+bd)2))2=((a2+b2)(c2+d2)−(ac+bd)2)2=((a2c2+a2d2+b2c2+b2d2)−(a2c2+2abcd+b2d2))2=(a2d2+b2c2−2abcd)2=((ad−bc)2)2=(ad−bc)2=式{2}
三阶行列式 。。。(暂时不知道,后续懂了再码)
ps:https://www.cnblogs.com/AndyJee/p/3491487.html
一种直观的理解思路ing