[Math] 二阶行列式和三阶行列式的几何意义的证明

证明:二阶行列式和三阶行列式的几何意义的证明

今天突发奇想去复习线性代数(主要是看数值分析发现自己线代忘得差不多了),然后就突然看见一句话,说是二阶行列式的几何意义就是其平行四边形的面积,三阶行列式的几何意义是其六面体的体积,尝试证明

二阶行列式

  1. 直观证明
    如图可见,由于平行四边形的定义,面积由底边和底边所对应的高决定,因此在下图平移过程中,蓝色和灰色的平行四边形的面积适中保持不变的,移动到合适位置时,可以显而易见的看到 以(a,b)和(c,d)为边的平行四边形是 以(a,0)和(0,d)为底边的长方形 与 以(c,0)和(0,b)为底边的长方形 的面积之差
    在这里插入图片描述
    图片来源 Matrix67: The Aha Moments
  2. 算式证明:平行四边形面积S = a b → × c d → \overrightarrow{ab} \times\overrightarrow{cd} ab ×cd = ∣ a b → ∣ ∣ c d → ∣ |\overrightarrow{ab} ||\overrightarrow{cd}| ab cd s i n θ sin\theta sinθ = a d − b c ad-bc adbc ?
    由于 a b → ⋅ c d → \overrightarrow{ab} \cdot\overrightarrow{cd} ab cd = ∣ a b → ∣ ∣ c d → ∣ |\overrightarrow{ab} ||\overrightarrow{cd}| ab cd c o s θ cos\theta cosθ,即 c o s θ cos\theta cosθ = a b → ⋅ c d → ∣ a b → ∣ ∣ c d → ∣ \frac{\overrightarrow{ab} \cdot\overrightarrow{cd}}{|\overrightarrow{ab} ||\overrightarrow{cd}|} ab cd ab cd ,即 s i n θ sin\theta sinθ = 1 − c o s 2 θ \sqrt{1-cos^2\theta} 1cos2θ = 1 − ( a b → ⋅ c d → ∣ a b → ∣ ∣ c d → ∣ ) 2 \sqrt{1-(\frac{\overrightarrow{ab} \cdot\overrightarrow{cd}}{|\overrightarrow{ab} ||\overrightarrow{cd}|})^2} 1(ab cd ab cd )2
    试证明 S = ∣ a b → ∣ ∣ c d → ∣ |\overrightarrow{ab} ||\overrightarrow{cd}| ab cd s i n θ { 1 } sin\theta\{1\} sinθ{1}= a d − b c { 2 } ad-bc\{2\} adbc{2}?
    { 1 } \{1\} {1}可以进一步化为 ∣ a b → ∣ ∣ c d → ∣ 1 − c o s 2 θ |\overrightarrow{ab} ||\overrightarrow{cd}|\sqrt{1-cos^2\theta} ab cd 1cos2θ = ∣ a b → ∣ ∣ c d → ∣ 1 − ( a b → ⋅ c d → ∣ a b → ∣ ∣ c d → ∣ ) 2 |\overrightarrow{ab} ||\overrightarrow{cd}|\sqrt{1-(\frac{\overrightarrow{ab} \cdot\overrightarrow{cd}}{|\overrightarrow{ab} ||\overrightarrow{cd}|})^2} ab cd 1(ab cd ab cd )2
    { 1 } \{1\} {1},式 { 2 } \{2\} {2}同时平方
    式 { 1 } = ( ∣ a b → ∣ ∣ c d → ∣ 1 − ( a b → ⋅ c d → ∣ a b → ∣ ∣ c d → ∣ ) 2 ) 2 = ( a 2 + b 2 c 2 + d 2 1 − ( a b → ⋅ c d → ∣ a b → ∣ ∣ c d → ∣ ) 2 ) 2 = ( a 2 + b 2 c 2 + d 2 1 − ( a c + b d a 2 + b 2 c 2 + d 2 ) 2 ) 2 = ( a 2 + b 2 c 2 + d 2 1 − ( a c + b d ) 2 ( a 2 + b 2 ) ( c 2 + d 2 ) ) 2 = ( ( a 2 + b 2 ) ( c 2 + d 2 ) ( 1 − ( a c + b d ) 2 ( a 2 + b 2 ) ( c 2 + d 2 ) ) ) 2 = ( ( a 2 + b 2 ) ( c 2 + d 2 ) − ( a c + b d ) 2 ) 2 = ( ( a 2 c 2 + a 2 d 2 + b 2 c 2 + b 2 d 2 ) − ( a 2 c 2 + 2 a b c d + b 2 d 2 ) ) 2 = ( a 2 d 2 + b 2 c 2 − 2 a b c d ) 2 = ( ( a d − b c ) 2 ) 2 = ( a d − b c ) 2 = 式 { 2 } \begin{aligned} 式\{1\}&= (|\overrightarrow{ab} ||\overrightarrow{cd}|\sqrt{1-(\frac{\overrightarrow{ab} \cdot\overrightarrow{cd}}{|\overrightarrow{ab} ||\overrightarrow{cd}|})^2})^2\\ &=({\sqrt{a^2+b^2}}{\sqrt{c^2+d^2}}\sqrt{1-(\frac{\overrightarrow{ab} \cdot\overrightarrow{cd}}{|\overrightarrow{ab} ||\overrightarrow{cd}|})^2})^2 \\ &=({\sqrt{a^2+b^2}}{\sqrt{c^2+d^2}}\sqrt{1-(\frac{ac+bd}{{\sqrt{a^2+b^2}}{\sqrt{c^2+d^2}}})^2})^2\\ &=({\sqrt{a^2+b^2}}{\sqrt{c^2+d^2}}\sqrt{1-\frac{(ac+bd)^2}{(a^2+b^2)(c^2+d^2)}})^2\\ &=(\sqrt{(a^2+b^2)(c^2+d^2)(1-\frac{(ac+bd)^2}{(a^2+b^2)(c^2+d^2)})})^2\\ &=(\sqrt{(a^2+b^2)(c^2+d^2)-(ac+bd)^2})^2\\ &=(\sqrt{(a^2c^2+a^2d^2+b^2c^2+b^2d^2)-(a^2c^2+2abcd+b^2d^2)})^2\\ &=(\sqrt{a^2d^2+b^2c^2-2abcd})^2\\ &=(\sqrt{(ad-bc)^2})^2 = (ad-bc)^2 = 式\{2\} \end{aligned} {1}=(ab cd 1(ab cd ab cd )2 )2=(a2+b2 c2+d2 1(ab cd ab cd )2 )2=(a2+b2 c2+d2 1(a2+b2 c2+d2 ac+bd)2 )2=(a2+b2 c2+d2 1(a2+b2)(c2+d2)(ac+bd)2 )2=((a2+b2)(c2+d2)(1(a2+b2)(c2+d2)(ac+bd)2) )2=((a2+b2)(c2+d2)(ac+bd)2 )2=((a2c2+a2d2+b2c2+b2d2)(a2c2+2abcd+b2d2) )2=(a2d2+b2c22abcd )2=((adbc)2 )2=(adbc)2={2}

三阶行列式 。。。(暂时不知道,后续懂了再码)

ps:https://www.cnblogs.com/AndyJee/p/3491487.html
一种直观的理解思路ing

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值