在我们已经理解了线性变换的概念的前提下,这个线性变换对应的矩阵A的行列式必然有其几何意义(而且十分直观):
以二维为例:
行列式的绝对值即为线性变换后面积的与原面积的比值(如图)
通过这个观点可以很直接的理解为什么不可逆矩阵的行列式为0:
同样以二维为例:
对于不可逆矩阵,其线性变换是将一组基向量压缩到了一条直线上,换句话说,变换后的面积为0。
那么,根据行列式的定义,不可逆矩阵的行列式自然为0,而可逆矩阵行列式自然不为0。
但细心的同学会发现,行列式存在负值,这又表示什么意义呢?
这引入了有向面积的概念:
当一对基向量持续接近时,其对应线性变换的行列式也持续减小,
直到两向量交叉,相对位置互换,这时行列式即为负值。
因此我们直到行列式值为2与-2是两码事,后者像是前者的基础上把整个平面翻了一个个
最后&