几何视角下的行列式解读与理解

这篇博客探讨了行列式在线性变换中的几何意义,解释了行列式的绝对值与二维线性变换后面积的关系,如何标识矩阵是否可逆。在二维空间中,行列式的负值代表有向面积,当基向量位置互换时出现。同时,文章讨论了行列式乘法规则的直观理解,AB与BA的乘积表示先进行A变换还是B变换并不影响最终的面积比值。
摘要由CSDN通过智能技术生成

在我们已经理解了线性变换的概念的前提下,这个线性变换对应的矩阵A的行列式必然有其几何意义(而且十分直观):

以二维为例:

行列式的绝对值即为线性变换后面积的与原面积的比值(如图)
在这里插入图片描述

通过这个观点可以很直接的理解为什么不可逆矩阵的行列式为0:

同样以二维为例:

对于不可逆矩阵,其线性变换是将一组基向量压缩到了一条直线上,换句话说,变换后的面积为0。

那么,根据行列式的定义,不可逆矩阵的行列式自然为0,而可逆矩阵行列式自然不为0。

在这里插入图片描述

但细心的同学会发现,行列式存在负值,这又表示什么意义呢?

这引入了有向面积的概念:

在这里插入图片描述

当一对基向量持续接近时,其对应线性变换的行列式也持续减小,

直到两向量交叉,相对位置互换,这时行列式即为负值。

因此我们直到行列式值为2与-2是两码事,后者像是前者的基础上把整个平面翻了一个个

最后&

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值