汽车加油问题-贪心

问题描述

 一辆汽车加满油后可行驶nkm 。旅途中有k个加油站。设计一个有效算法,指出应在哪些加油站停靠加油,使沿途加油次数最少。并计算最少加油次数。


问题分析

 根据贪心算法的贪心选择性质, 为了要使加油次数最少,就会选择离加满油的点远一点的加油站加油

 另外,当加满油之后,都要是此后的过程中使加油次数最少。每一次汽车中剩下的油不能再行驶到下一站时,就在该站加油。每一次加满油之后与起点具有相同的条件,可以看做一个新的起点,过程也是相同的。因此,该问题具有最优子结构性质


核心代码

nt greedy(vector<int> x, int n)
{
  int j, i, s, sum=0, k=x.size();  //sum是行驶距离之和,k是加油站之和
  for(j=0; j<k; ++j)
    if(x[j] > n) {
      cout<<"No Solution"<<endl;  //如果无法到达目的地,则输出”No Solution”
      return -1;
    }
  for(i=0, s=0; i <k; ++i) {
    s += x[i];
    if(s > n) sum++, s = x[i];  //当无法到达下一个加油站时,要再此处加油。并且将s赋值为下一个加油站的距离
  }
  return sum;
}

n:表示汽车加满油之后可以行驶nkm;k:旅途中有k个加油站


例子

 加油站数:7
 最大行驶距离:7
 每个站之间的距离:1 2 3 4 5 1 6 6
在这里插入图片描述
在这里插入图片描述

红色部分表明要在从前一个加油站不能行驶到当前加油站,需在前一个加油站加油。

一共需要加油4次


完整代码

#include<iostream>
using namespace std;
int main()
{
    int n,k;
    int a[100];
    cout<<"请输入最大行驶路径和站点个数:";
    cin>>n>>k;
    int num=0,s=n;
    cout<<"请输入每个站点之间的路径:";
    for(int i=0;i<=k;i++)
    {
         cin>>a[i];
    }
    for(int i=0;i<=k;i++)
    {
        if(a[i]>n)
         {
             cout<<"No Solution";
             return 0;
         }
         if(s-a[i]>=0)
         {
             s-=a[i];
         }
         else
         {
             num++;
             s=n-a[i];
         }
    }
    cout<<"需要加油次数:"<<num;
    return 0;
}


测试样例

输入
请输入最大行驶路径和站点个数:7 7
请输入每个站点之间的路径:1 2 3 4 5 1 6 6

输出
需要加油次数:4

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值