HV指标——多目标进化算法性能评价指标

超体积指标是一种评估多目标优化算法性能的工具,它兼顾了收敛性和多样性。HV值大表示算法性能更优,但计算复杂度高,尤其在高维问题中。此外,参考点的选择对结果准确性有显著影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

超体积指标(HV,Hypervolume):算法获得的非支配解集与参照点围成的目标空间中区域的体积。HV值越大,说明算法的综合性能越好。

优点:

1.同时评价收敛性和多样性;

2.能够以单个数字得到解与最优集合的接近程度,并在某种程度上得到目标空间上解的分布。

缺点:

1.计算复杂度高,尤其是高维多目标优化问题;

2.参考点的选择在一定程度上决定超体积指标值的准确性。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值