论文信息
题目:Many-Objective Jaccard-Based Evolutionary Feature Selection for High-Dimensional Imbalanced Data Classification
基于Jaccard相似度的多目标进化特征选择方法用于高维不平衡数据分类
作者:H. Saadatmand 和 Mohammad-R. Akbarzadeh-T
论文创新点
- Jaccard相似度集成: 在种群初始化、繁殖和精英选择中引入Jaccard相似度,增强多样性并避免重复解。
- 基于集合的变异操作: 使用交集和并集操作符进行二进制编码的变异操作,有效处理高维特征选择。
- 双加权KNN分类器: 提出KNN2W分类器,结合类别不平衡分布和邻居相似度,提升不平衡数据分类性能。
摘要
过滤器和包装器