TPAMI 2024 | 基于Jaccard相似度的多目标进化特征选择方法用于高维不平衡数据分类

论文信息

题目:Many-Objective Jaccard-Based Evolutionary Feature Selection for High-Dimensional Imbalanced Data Classification
基于Jaccard相似度的多目标进化特征选择方法用于高维不平衡数据分类
作者:H. Saadatmand 和 Mohammad-R. Akbarzadeh-T

论文创新点

  1. Jaccard相似度集成: 在种群初始化、繁殖和精英选择中引入Jaccard相似度,增强多样性并避免重复解。
  2. 基于集合的变异操作: 使用交集和并集操作符进行二进制编码的变异操作,有效处理高维特征选择。
  3. 双加权KNN分类器: 提出KNN2W分类器,结合类别不平衡分布和邻居相似度,提升不平衡数据分类性能。

摘要

过滤器和包装器

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值