opencv
凵恧
这个作者很懒,什么都没留下…
展开
-
数据增强:YoloV4当中的Mosaic数据增强方法
代码:https://github.com/bubbliiiing/yolo3-pytorch对数据集转换成VOC格式,代码与上面可得。yolo3整体的文件夹构架如下:本文使用VOC格式进行训练。训练前将标签文件放在VOCdevkit文件夹下的VOC2007文件夹下的Annotation中。训练前将图片文件放在VOCdevkit文件夹下的VOC2007文件夹下的JPEGImages中。在训练前利用voc2yolo3.py文件生成对应的txt。再运行根目录下的voc_annotation原创 2020-08-27 15:17:47 · 1394 阅读 · 0 评论 -
Ubuntu中opencv4.1.0的安装用C++编译
参考:https://blog.csdn.net/luanpeng825485697/article/details/81181825前段时间做了Python编译的opencv的安装,现在介绍下C++编译的opencv的安装及检测是否安装成功。注意事项:下载opencv应下载source.zip(https://github.com/opencv/opencv/releases)对openC...原创 2019-05-14 09:46:36 · 801 阅读 · 0 评论 -
SLAM学习(五)——相机与图像
前面文章主要介绍了“相机如何表示自身位置”,部分的解释了SLAM经典模型中变量的含义和运动方程部分。这篇文章讨论“机器人如何观测外部世界”,也就是观测方程部分。1.相机模型1.1针孔模型该文主要讲解使用针孔和畸变两个模型来描述整个投影过程。首先要区分几个坐标系:世界坐标系、(相机坐标系=?物理成像平面坐标系)、还有就是像素坐标系。再者就是内参(该式为从成像平面坐标系转换成像素坐标系过程):...原创 2019-08-27 15:55:16 · 271 阅读 · 0 评论 -
SLAM学习(七)——视觉里程计
前面写的是介绍运动方程和观测方程的具体形式,并讲解了以非线性优化为主的求解方法这篇关注基于特征点方式的视觉里程计算法。我们将介绍什么是特征点、如何提取特征点和匹配特征点,以及如何根据配对的特征点估计相机运动。1.特征点从图像中选取比较有代表性的点,这些点在相机视角发生少量变化后会保持不变,在经典SLAM中称之为路标,而在视觉SLAM中指图像的特征。从图像中判断哪些地方是同一个点,仅凭灰度知识...原创 2019-08-28 20:31:00 · 440 阅读 · 0 评论