C++
凵恧
这个作者很懒,什么都没留下…
展开
-
Ubuntu中opencv4.1.0的安装用C++编译
参考:https://blog.csdn.net/luanpeng825485697/article/details/81181825前段时间做了Python编译的opencv的安装,现在介绍下C++编译的opencv的安装及检测是否安装成功。注意事项:下载opencv应下载source.zip(https://github.com/opencv/opencv/releases)对openC...原创 2019-05-14 09:46:36 · 801 阅读 · 0 评论 -
用MATLAB进行双目标定
具体步骤参考下列链接:https://blog.csdn.net/dreamharding/article/details/53700166相对比较全面的标定方法原创 2019-08-19 17:57:22 · 299 阅读 · 0 评论 -
SLAM学习(一)——Linux编译C++方法介绍
简单概括下SLAM主要步骤:传感器信息读取、视觉里程计(VO)、后端优化(Optimization)、回环检测(Loop Closing)、建图(Mapping)该文章主要介绍编程基础部分:在Linux进行编程的方法介绍程序名:helloSLAM.cpp#include<iostream>using namespace std;int mian(int argc, char...原创 2019-08-25 10:41:57 · 505 阅读 · 0 评论 -
SLAM学习(六)——非线性优化
1.最小二乘法的引出该篇文章将介绍如何通过优化处理噪声数据,并且由这些表层逐渐深入图优化本质,给出图优化解决算法。经典的SLAM模型由一个运动方程和一个观测方程组成,如下所示:我们希望通过带有噪声的数据推断位姿x和地图y,这构成一个状态估计问题。在SLAM过程中,由于数据随时间变化,在很长一段时间内研究者用扩展卡尔曼滤波器求解它,但它只关心当前时刻状态估计Xk;相对的,近年来,使用的非线性优...原创 2019-08-28 11:07:58 · 738 阅读 · 0 评论 -
SLAM学习(七)——视觉里程计
前面写的是介绍运动方程和观测方程的具体形式,并讲解了以非线性优化为主的求解方法这篇关注基于特征点方式的视觉里程计算法。我们将介绍什么是特征点、如何提取特征点和匹配特征点,以及如何根据配对的特征点估计相机运动。1.特征点从图像中选取比较有代表性的点,这些点在相机视角发生少量变化后会保持不变,在经典SLAM中称之为路标,而在视觉SLAM中指图像的特征。从图像中判断哪些地方是同一个点,仅凭灰度知识...原创 2019-08-28 20:31:00 · 440 阅读 · 0 评论