前述
重复购买率(二次购买率)及新老客户占比都是客户数据分析中极其重要的指标(除此之外没什么好简述的,直接上货)
目标
1.把订单分为客户首次购买的订单和后续购买的订单,进而算出重复购买率 2.把客户分为新客户与老客户,进而计算新老客占比
过程
数据源:
对于判断哪些订单是用户首次购买的,哪些不是首次购买的,思路是分别为客户ID和订单日期创建变量,变量可以保存在当前筛选上下文的计算列,Filter可以使计算处于新的筛选上下文。
对于客户ID,让它的变量(旧的上下文)和它在新的上下文进行匹配,对于订单日期,让它的变量大于新上下文的订单日期(同样的原理,不使用变量而用earlier函数代替也可以,但本人更推荐使用变量)在这个基础上使用SUMX迭代,判断结果的行数是否大于零,如果不大于零,说明对于某一客户没有任何订单是在与首单不同的日期生成的,反之同理:
二次购买判断 =
VAR
E_Date = 'Data'[订单日期]
VAR
CUST = 'Data'[客户 ID]
RETURN
IF(
SUMX(
FILTER('Data',CUST = 'Data'[客户 ID]&&E_Date > 'Data'[订单日期]),
COUNTROWS('Data'))>0,"非首次","首次")
效果如下: