(邱维声)高等代数课程笔记:线性空间的定义,例子

3.1:线性空间的定义,例子

\quad 目前为止,我们已经得到了以下结论:

\quad n n n 个方程组成的 n n n 元线性方程组有唯一解的 充分必要条件 为:方程组系数矩阵的行列式不等于 0 0 0 。即

{ a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n = b 2 ⋮ a n 1 x 1 + a n 2 x 2 + ⋯ + a n n x n = b n 有唯一解 ⟺ ∣ a 11 ⋯ a 1 n ⋮ ⋱ ⋮ a n 1 ⋯ a n n ∣ ≠ 0 \left\{ \begin{array}{c} a_{11}x_1+a_{12}x_2+\cdots +a_{1n}x_n=b_1\\ a_{21}x_1+a_{22}x_2+\cdots +a_{2n}x_n=b_2\\ \vdots\\ a_{n1}x_1+a_{n2}x_2+\cdots +a_{nn}x_n=b_n\\ \end{array} \right. \text{有唯一解} \Longleftrightarrow \left| \begin{matrix} a_{11}&\cdots&a_{1n}\\ \vdots&\ddots&\vdots\\ a_{n1}&\cdots&a_{nn}\\ \end{matrix} \right|\ne 0 a11x1+a12x2++a1nxn=b1a21x1+a22x2++a2nxn=b2an1x1+an2x2++annxn=bn有唯一解 a11an1a1nann =0

\quad 但事实上,对于本章一开始提出的大问题而言,仅有这样的结论是远远不够的。比如:

  • ∣ a 11 ⋯ a 1 n ⋮ ⋱ ⋮ a n 1 ⋯ a n n ∣ = 0 \left| \begin{matrix}a_{11}& \cdots& a_{1n}\\ \vdots& \ddots& \vdots\\ a_{n1}& \cdots& a_{nn} \end{matrix} \right|=0 a11an1a1nann =0 时,线性方程组的解将对应两种不同的情形:无解? 或者 有无穷解? 但究竟是哪一种情形是无法判定的;

  • 上述结论仅仅适用于方程组的方程个数 s s s 与未知量个数 n n n 相同的情形,而当 s ≠ n s \ne n s=n 时,又该如何处理呢?


\quad 回到一开始提出的问题:

如何从 n n n 元线性方程组的系数和常数项出发,判定方程组:
(1)是否有解?(2)若有解,有多少解?

目前,这个大问题尚未完全解决,因此需要继续努力!

“宜将剩勇追穷寇,不可沽名学霸王”

\quad 下面给出两个思路:

  • n n n 元线性方程组中,设方程的个数为 s s s,未知数的个数为 n n n。当 s ≠ n s \ne n s=n 时,显然无法使用上述结论,但受其启发,我们可以考虑研究系数矩阵的 k k k 阶子式,以期找到求解方法。后续将见到,该思路是可行的,但效果并不明显。

  • 线性空间。这也是本章的重点内容。后续将见到,线性空间不仅可以完美地解决线性方程组的求解问题,而且还有更重大的应用!


\quad 先观察一个 n n n 元线性方程:

a 1 x 1 + a 2 x 2 + ⋯ a n x n = b , a i , b ∈ K ( i = 1 , , 2 ⋯   , n ) a_{1}x_{1} + a_{2}x_{2} +\cdots a_{n}x_{n} = b,\quad a_{i} , b \in K (i=1,,2\cdots,n) a1x1+a2x2+anxn=b,ai,bK(i=1,,2,n)

其中, n n n 个未知量 x 1 , x 2 , ⋯   , x n x_{1},x_{2},\cdots,x_{n} x1,x2,,xn 分别对应 n n n 个系数 a 1 , a 2 , ⋯   , a n a_{1},a_{2},\cdots,a_{n} a1,a2,,an,并且这种对应是有序的。据此,可以抽象出 n n n 元有序数组的概念。

n n n 元有序数组 ( a 1 , a 2 , ⋯   , a n ) , a i ∈ K , ∀   1 ≤ i ≤ n (a_{1},a_{2},\cdots,a_{n}),a_{i} \in K,\forall ~ 1 \le i \le n (a1,a2,,an),aiK, 1in.

\quad 考虑由数域 K K K 上的所有 n n n 元有序数组组成的集合:

K n : = { ( a 1 , a 2 , ⋯   , a n ) ∣ a i ∈ K , ∀   1 ≤ i ≤ n } . K^{n}:=\{(a_{1},a_{2},\cdots,a_{n}) \mid a_{i} \in K,\forall ~ 1 \le i \le n\}. Kn:={(a1,a2,,an)aiK, 1in}.

基于集合的互异性,我们有必要对 K n K^{n} Kn 规定“元素相等”。

相等

( a 1 , a 2 , ⋯   , a n ) = ( b 1 , b 2 , ⋯   , a n ) : ⟺ d e f a i = b i , i = 1 , 2 , ⋯   , n . (a_{1},a_{2},\cdots,a_{n}) = (b_{1},b_{2},\cdots,a_{n}):\overset{def}{\Longleftrightarrow} a_{i} = b_{i},i=1,2,\cdots,n. (a1,a2,,an)=(b1,b2,,an):defai=bi,i=1,2,,n.

例 1:平面直角坐标系中,每个向量的坐标都是一个二元有序数组。

\quad 可以借用几何的语言,称 K n K^{n} Kn 中的一个 n n n 元有序数组为一个 n 维向量


例 2:在平面直角坐标系中,每个向量的坐标都是一个二元有序数组,且每个有序数组(坐标)都唯一的对应着一个向量。平面中的向量有两个运算:向量加法与向量数乘。

例 3:求解线性方程组时,增广矩阵的初等行变换:

  • 互换两行的位置;

  • 以一个非零数乘以某一行

  • 将某一行的倍数加至另一行上

\quad 以上两个例子中可以说都涉及到了“加法” 和 “数量乘法” 两种运算。

\quad 很自然地,我们会想:能够在 K n K^{n} Kn 上定义两种运算?

\quad 下面,尝试将这一想法付诸实践,一般地,设 ( a 1 , a 2 , ⋯   , a n ) , ( b 1 , b 2 , ⋯   , b n ) ∈ K n (a_{1},a_{2},\cdots,a_{n}),(b_{1},b_{2},\cdots,b_{n}) \in K^{n} (a1,a2,,an),(b1,b2,,bn)Kn k ∈ K k\in K kK.

K n K^{n} Kn 上定义加法运算

( a 1 , a 2 , ⋯   , a n ) + ( b 1 , b 2 , ⋯   , b n ) : =  ⁣ =  ⁣ = def ( a 1 + b 1 , a 2 + b 2 , ⋯   , a n + b n ) . (a_{1},a_{2},\cdots,a_{n}) + (b_{1},b_{2},\cdots,b_{n}) :\overset{\text{def}}{=\!=\!=} (a_{1} + b_{1},a_{2} + b_{2},\cdots,a_{n} + b_{n}). (a1,a2,,an)+(b1,b2,,bn):===def(a1+b1,a2+b2,,an+bn).

K n K^{n} Kn 上定义数量乘法运算

k ⋅ ( a 1 , a 2 , ⋯   , a n ) : =  ⁣ =  ⁣ = def ( k ⋅ a 1 , k ⋅ a 2 , ⋯   , k ⋅ a n ) . k \cdot (a_{1},a_{2},\cdots,a_{n}) :\overset{\text{def}}{=\!=\!=} (k\cdot a_{1},k \cdot a_{2},\cdots,k \cdot a_{n}). k(a1,a2,,an):===def(ka1,ka2,,kan).

\quad 分析可知,上述定义的 n n n 元有序组的运算最终可归结为分量的运算,而每个分量 a i ∈ K ( i = 1 , 2 , ⋯   , n ) a_{i} \in K (i=1,2,\cdots,n) aiK(i=1,2,,n),因此又可归结为数域 K K K 上的加法与乘法,容易验证,上述定义是定义良好的(well-defined,或者说,定义是合理的)。


\quad 作完上述定义后,自然而然地要考虑:这样的运算具有怎样的运算性质或运算法则?

\quad 为了方便叙述,我们先对符号作一定的说明和简化。

(1) ∀   ( a 1 , a 2 , ⋯   , a n ) ∈ K n \forall ~ (a_{1},a_{2},\cdots,a_{n}) \in K^{n}  (a1,a2,,an)Kn 记作: ∀   α ∈ K n \forall ~ \boldsymbol{\alpha} \in K^{n}  αKn

(2) ∀   ( b 1 , b 2 , ⋯   , b n ) ∈ K n \forall ~ (b_{1},b_{2},\cdots,b_{n}) \in K^{n}  (b1,b2,,bn)Kn 记作: ∀   β ∈ K n \forall ~ \boldsymbol{\beta} \in K^{n}  βKn

(3) ∀   ( c 1 , c 2 , ⋯   , c n ) ∈ K n \forall ~ (c_{1},c_{2},\cdots,c_{n}) \in K^{n}  (c1,c2,,cn)Kn 记作: ∀   γ ∈ K n \forall ~ \boldsymbol{\gamma} \in K^{n}  γKn

(4) ∀   k , l ∈ K \forall ~ k,l \in K  k,lK.

\quad 不难验证, K n K^{n} Kn 上的运算具有以下性质:

(1)加法交换律: α + β = β + α \boldsymbol{\alpha} + \boldsymbol{\beta} = \boldsymbol{\beta} + \boldsymbol{\alpha} α+β=β+α;

(2)加法结合律: ( α + β ) + γ = α + ( β + γ ) (\boldsymbol{\alpha} + \boldsymbol{\beta}) + \boldsymbol{\gamma} = \boldsymbol{\alpha} + (\boldsymbol{\beta} + \boldsymbol{\gamma}) (α+β)+γ=α+(β+γ);

(3)存在零元: ∃   0 ∈ K n , s . t . α + 0 = 0 + α = α \exists ~ \boldsymbol{0} \in K^{n},\quad s.t.\quad \boldsymbol{\alpha} + \boldsymbol{0} = \boldsymbol{0} + \boldsymbol{\alpha} = \boldsymbol{\alpha}  0Kn,s.t.α+0=0+α=α;

(4)存在负元: ∀   α ∈ K n , ∃   ( − α ) ∈ K n , s . t . α + ( − α ) = ( − α ) + α = 0 \forall ~ \boldsymbol{\alpha} \in K^{n},\exists ~(-\boldsymbol{\alpha}) \in K^{n},\quad s.t.\quad \boldsymbol{\alpha} + (-\boldsymbol{\alpha}) = (-\boldsymbol{\alpha}) + \boldsymbol{\alpha} = \boldsymbol{0}  αKn, (α)Kn,s.t.α+(α)=(α)+α=0;

(5) 1 ⋅ α = α 1\cdot \boldsymbol{\alpha} = \boldsymbol{\alpha} 1α=α;

(6) ( k ⋅ l ) ⋅ α = k ⋅ ( l ⋅ α ) (k \cdot l) \cdot \boldsymbol{\alpha} = k \cdot (l \cdot \boldsymbol{\alpha}) (kl)α=k(lα);

(7) k ⋅ ( α + β ) = k ⋅ α + k ⋅ β k \cdot (\boldsymbol{\alpha} + \boldsymbol{\beta}) = k \cdot \boldsymbol{\alpha} + k \cdot \boldsymbol{\beta} k(α+β)=kα+kβ;

(8) ( k + l ) ⋅ α = k ⋅ α + l ⋅ α (k + l) \cdot \boldsymbol{\alpha} = k \cdot \boldsymbol{\alpha} + l \cdot \boldsymbol{\alpha} (k+l)α=kα+lα.

\quad 另外,由 ( 4 ) (4) (4) 可以定义减法运算:
α − β : =  ⁣ =  ⁣ = def α + ( − β ) . \boldsymbol{\alpha} - \boldsymbol{\beta}:\overset{\text{def}}{=\!=\!=} \boldsymbol{\alpha} + (-\boldsymbol{\beta}). αβ:===defα+(β).


\quad 目前为止,我们对 K n K^{n} Kn 规定了加法与数量乘法,并且验证了两种运算的 8 8 8 条运算法则。

定义 1. n n n 维向量空间:由数域 K K K 上的所有 n n n 元有序组构成的集合 K n K^{n} Kn,连同定义在上面的加法和数量乘法运算以及满足的 8 8 8 条运算法则一起称为数域 K K K 上的一个 n 维向量空间


\quad 事实上,类似于 K n K^{n} Kn 的例子有很多。例如:

(1)直线上,所有以原点 O O O 为起点的向量构成的集合;

(2)平面上,所有以原点 O O O 为起点的向量构成的集合;

(3)……

\quad 这些集合都有共同的特征:

(1)都可以在其上定义加法和数量乘法两种运算;

(2)所定义的两种运算都满足前面所讨论的 8 8 8 条运算法则。

\quad 之后,我们将抓住这两个主要特征,抽象并建立数学模型:线性空间


\quad 我们需要严格地定义两种运算,但在此之前,我们论证一下,什么是运算?

\quad 现代数学中有两个最基本的概念:集合、映射。下面,我们将借助于集合与映射,给出“运算”的概念。

\quad 关于集合,大家都很熟悉了(实际上,只需了解集合的一些基本概念即可),这里不在进行叙述。我们重点关注一下映射。先来回顾一下,什么是映射?

定义 2. 映射:设 A A A B B B 为两个集合,若存在某个对应法则 f f f,使得 A A A 中的任一元素 a a a,都有 B B B 中唯一的一个元素 b b b 与之对应,则称 f f f A A A B B B 的一个 映射

f : A ⟶ B ∀ a ⟼ ! b = f ( a ) . \begin{aligned} f: A &\longrightarrow B \\ \forall a &\longmapsto !b = f(a). \end{aligned} f:AaB!b=f(a).

\quad 其中,

1 o 1^o 1o f f f对应法则

2 o 2^o 2o A A A 称为 定义域(domain);

3 o 3^o 3o B B B 称为 陪域(codmian);

4 o 4^o 4o b b b 称为 a a a f f f 在的 a a a 称为 b b b f f f 在的一个 原像

5 o 5^o 5o 满射:若 f ( A ) = B f(A) = B f(A)=B,则称 f f f 为一个 满射

6 o 6^o 6o 单射:若 A A A 中不同的元素,在 f f f 下的像也不同,则称 f f f 为一个 单射

7 o 7^o 7o 双射:若 f f f 既是单射又是满射,则称 f f f 为一个 双射,或 一一映射

有了映射的概念,就可以在集合上定义运算了。


例 4:整数集合中,

(1) + : 2 + 3 = 5 +:2 + 3 = 5 +:2+3=5 ( 2 , 3 ) ⟼ 5 (2,3) \longmapsto 5 (2,3)5

(2) × : 2 × 3 = 6 \times : 2\times 3 = 6 ×:2×3=6 ( 2 , 3 ) ⟼ 6 (2,3) \longmapsto 6 (2,3)6.

定义 3. 笛卡尔积:设 S S S 为一个非空集合,由 S S S 中的有序元素对组成的集合

{ ( a , b ) ∣ a , b ∈ S } \{(a,b) \mid a,b \in S \} {(a,b)a,bS}

称为 S S S 与自身的 笛卡尔积,记作 S × S S \times S S×S.

\quad 一般地,设 S S S M M M 为两个非空集合,由 S S S M M M 中的元素组成的有序元素对构成的集合
{ ( a , b ) ∣ a ∈ S , b ∈ M } \{(a,b) \mid a\in S,b \in M\} {(a,b)aS,bM}
称为 S S S M M M笛卡尔积,记作 S × M S \times M S×M.

例 5:整数集 Z \mathbb{Z} Z 上的加法运算是 Z × Z \mathbb{Z} \times \mathbb{Z} Z×Z Z \mathbb{Z} Z 的一个映射。

+ : Z × Z ⟶ Z +:\mathbb{Z}\times \mathbb{Z} \longrightarrow \mathbb{Z} +:Z×ZZ

定义 4. 运算:设 S S S 是一个非空集合, S × S S \times S S×S S S S 的一个映射称为 S S S 上的一个 二元代数运算,简称 S S S 上的一个 运算


有了“运算”的概念,下面来构建数学模型——线性空间。

定义 5. 线性空间:设 V V V 是一个非空集合, K K K 是一个数域,若 V V V 上有一个运算( V × V V\times V V×V V V V 的一个映射)称为加法,即 ( α , β ) ↦ α + β (\boldsymbol{\alpha},\boldsymbol{\beta}) \mapsto \boldsymbol{\alpha} + \boldsymbol{\beta} (α,β)α+β K K K V V V 有一个运算( K × V K \times V K×V V V V 的一个映射)称为数量乘法,即 ( k , α ) ↦ k ⋅ α (k,\boldsymbol{\alpha}) \mapsto k \cdot \boldsymbol{\alpha} (k,α)kα,并且满足下述 8 8 8 条运算法则:

1 o 1^o 1o 加法交换律: α + β = β + α \boldsymbol{\alpha} +\boldsymbol{\beta} = \boldsymbol{\beta} + \boldsymbol{\alpha} α+β=β+α α , β ∈ V \boldsymbol{\alpha},\boldsymbol{\beta} \in V α,βV

2 o 2^o 2o 加法结合律: ( α + β ) + γ = α + ( β + γ ) (\boldsymbol{\alpha} + \boldsymbol{\beta})+ \boldsymbol{\gamma} = \boldsymbol{\alpha} + (\boldsymbol{\beta} + \boldsymbol{\gamma}) (α+β)+γ=α+(β+γ) α , β , γ ∈ V \boldsymbol{\alpha},\boldsymbol{\beta},\boldsymbol{\gamma} \in V α,β,γV

3 o 3^o 3o 存在零元 0 \boldsymbol{0} 0 α + 0 = 0 + α \boldsymbol{\alpha} + \boldsymbol{0} = \boldsymbol{0} + \boldsymbol{\alpha} α+0=0+α α ∈ V \boldsymbol{\alpha} \in V αV

4 o 4^o 4o ∀ α ∈ K n \forall \boldsymbol{\alpha} \in K^{n} αKn 存在负元: − α - \boldsymbol{\alpha} α α + ( − α ) = ( − α ) + α \boldsymbol{\alpha} + (-\boldsymbol{\alpha}) = (-\boldsymbol{\alpha} )+ \boldsymbol{\alpha} α+(α)=(α)+α α ∈ V \boldsymbol{\alpha} \in V αV

5 o 5^o 5o 存在单位元 1 \boldsymbol{1} 1 1 ⋅ α = α \boldsymbol{1}\cdot \boldsymbol{\alpha} = \boldsymbol{\alpha} 1α=α α ∈ V \boldsymbol{\alpha} \in V αV

6 o 6^o 6o ( k ⋅ l ) ⋅ α = k ⋅ ( l ⋅ α ) = l ⋅ ( k ⋅ α ) (k \cdot l) \cdot \boldsymbol{\alpha} = k \cdot (l \cdot \boldsymbol{\alpha}) = l \cdot (k \cdot \boldsymbol{\alpha}) (kl)α=k(lα)=l(kα) k , l ∈ K , α ∈ V k,l \in K,\boldsymbol{\alpha} \in V k,lK,αV

7 o 7^o 7o ( k + l ) ⋅ α = k ⋅ α + l ⋅ α (k+l) \cdot \boldsymbol{\alpha} = k \cdot \boldsymbol{\alpha} + l \cdot \boldsymbol{\alpha} (k+l)α=kα+lα k , l ∈ K , α ∈ V k,l \in K,\boldsymbol{\alpha} \in V k,lK,αV

8 o 8^o 8o k ⋅ ( α + β ) = k ⋅ α + k ⋅ β k \cdot (\boldsymbol{\alpha} + \boldsymbol{\beta}) = k \cdot \boldsymbol{\alpha} + k \cdot \boldsymbol{\beta} k(α+β)=kα+kβ k ∈ V , α , β ∈ V k \in V,\boldsymbol{\alpha},\boldsymbol{\beta} \in V kV,α,βV,

则称 V V V 为数域 K K K 上的一个线性空间,简称 线性空间

此外,借用几何的语言,可将线性空间 V V V 中的元素视为向量,因此线性空间又可称为 向量空间


例 6:数域 K K K 上的 n n n 维向量空间 K n K^{n} Kn 是数域 K K K 上的一个线性空间。
K n : = { ( a 1 , a 2 , ⋯   , a n ) ∣ a i ∈ K , ∀   1 ≤ i ≤ n } . K^{n}:=\{(a_{1},a_{2},\cdots,a_{n}) \mid a_{i} \in K,\forall ~ 1 \le i \le n\}. Kn:={(a1,a2,,an)aiK, 1in}.
例 7:几何空间是实数域 R \mathbb{R} R 上的一个线性空间。
R 3 : = { ( x , y , z ) ∣ x , y , z ∈ R } . \mathbb{R}^{3}:=\{(x,y,z) \mid x,y,z\in \mathbb{R}\}. R3:={(x,y,z)x,y,zR}.
例 8:非空集合 X X X 到实数集 R \mathbb{R} R 上的一个映射称为 函数

\quad 这里实际上是对微积分中的函数的一种推广, X X X 不限于实数集 R \mathbb{R} R,例如,若 X = R × R X = \mathbb{R} \times \mathbb{R} X=R×R,则为二元函数。
R X : = { 非空集合 X 上的映射 } \mathbb{R}^{X}: = \{非空集合 X 上的映射\} RX:={非空集合X上的映射}

\quad 可在 R X \mathbb{R}^{X} RX 上定义加法:
( f + g ) ( x ) : =  ⁣ =  ⁣ = def f ( x ) + g ( x ) , ∀ f , g ∈ R X , ∀ x ∈ X . (f + g)(x) :\overset{\text{def}}{=\!=\!=} f(x) + g(x),\quad \forall f,g \in \mathbb{R}^{X},\forall x \in X. (f+g)(x):===deff(x)+g(x),f,gRX,xX.

\quad 可在 R X \mathbb{R}^{X} RX 上定义数量乘法:
( k ⋅ f ) ( x ) : =  ⁣ =  ⁣ = def k ⋅ f ( x ) , ∀ f ∈ R X , ∀ k ∈ R , ∀ x ∈ X . (k \cdot f)(x) :\overset{\text{def}}{=\!=\!=} k \cdot f(x) ,\quad \forall f \in \mathbb{R}^{X},\forall k \in \mathbb{R},\forall x \in X. (kf)(x):===defkf(x),fRX,kR,xX.

\quad 另外,定义 R X \mathbb{R}^{X} RX 中的零元为 零函数
0 ( x ) = 0 , 0 ∈ R X , ∀ x ∈ X . 0(x) = 0,\quad 0 \in \mathbb{R}^{X},\forall x \in X. 0(x)=0,0RX,xX.

\quad 容易验证 R X \mathbb{R}^{X} RX 是实数域 R \mathbb{R} R 上的一个线性空间。


我们已经有了线性空间的概念,下面从它满足的 8 8 8 条运算法则出发,研究其性质。

线性空间的实例是有很多的,但研究线性空间的性质,不能只研究某一个线性空间的实例,而是应当从定义出发,按照数学的思维方式,以认证式、公理化的方法,从定义、公理和已经证明的定理出发,一步一步地进行逻辑推理。

\quad 一般地,设 V V V 是数域 K K K 上的一个线性空间,则:

性质 1 V V V 中的零元 0 \boldsymbol{0} 0 是唯一的。

证明:

\quad 0 1 , 0 2 \boldsymbol{0}_{1},\boldsymbol{0}_{2} 01,02 都是 V V V 的零元,则:

0 1 = 0 2 是零元 0 1 + 0 2 = 加法交换律 0 2 + 0 1 = 0 1 是零元 0 2 . \boldsymbol{0}_{1} \xlongequal{\boldsymbol{0}_{2}是零元} \boldsymbol{0}_{1} + \boldsymbol{0}_{2} \xlongequal{加法交换律} \boldsymbol{0}_{2} + \boldsymbol{0}_{1} \xlongequal{\boldsymbol{0}_{1}是零元} \boldsymbol{0}_{2}. 0102是零元 01+02加法交换律 02+0101是零元 02.

#

性质 2 V V V 中任意元素 α \boldsymbol{\alpha} α 是唯一的。

证明:

\quad 任取 α ∈ V \boldsymbol{\alpha} \in V αV,设 β 1 \boldsymbol{\beta}_{1} β1 β 2 \boldsymbol{\beta}_{2} β2 都是 α \boldsymbol{\alpha} α 的负元,则

β 1 = 0 为零元 β 1 + 0 = β 2 是负元 β 1 + ( α + β 2 ) = 加法结合律 ( β 1 + α ) + β 2 = β 1 是负元 0 + β 2 = 0 是零元 β 2 . \boldsymbol{\beta}_{1} \xlongequal{\boldsymbol{0}为零元} \boldsymbol{\beta}_1+\boldsymbol{0} \xlongequal{\boldsymbol{\beta}_{2}是负元} \boldsymbol{\beta}_{1} + (\boldsymbol{\alpha}+\boldsymbol{\beta}_{2}) \xlongequal{加法结合律} (\boldsymbol{\beta}_{1}+\boldsymbol{\alpha}) + \boldsymbol{\beta}_{2} \xlongequal{\boldsymbol{\beta}_{1}是负元} \boldsymbol{0} + \boldsymbol{\beta}_{2} \xlongequal{\boldsymbol{0} 是零元} \boldsymbol{\beta}_{2}. β10为零元 β1+0β2是负元 β1+(α+β2)加法结合律 (β1+α)+β2β1是负元 0+β20是零元 β2.

#

性质 3 0 ⋅ α = 0 , ∀ α ∈ V 0 \cdot \boldsymbol{\alpha} = \boldsymbol{0},\forall \boldsymbol{\alpha} \in V 0α=0,αV.

证明:

0 ⋅ α = ( 0 + 0 ) ⋅ α = 0 ⋅ α + 0 ⋅ α . 0 \cdot \boldsymbol{\alpha} = (0 + 0) \cdot \boldsymbol{\alpha} = 0 \cdot \boldsymbol{\alpha} + 0 \cdot \boldsymbol{\alpha}. 0α=(0+0)α=0α+0α.

显然 0 ⋅ α ∈ V 0 \cdot \alpha \in V 0αV 存在负元 ( − 0 ⋅ α ) (-0\cdot \boldsymbol{\alpha}) (0α),等式两边同加 ( − 0 ⋅ α ) (-0\cdot \boldsymbol{\alpha}) (0α),即有

0 ⋅ α = 0 . 0 \cdot \boldsymbol{\alpha} = \boldsymbol{0}. 0α=0.

#

性质 4 k ⋅ 0 = 0 , ∀ k ∈ K , ∀ α ∈ V k \cdot \boldsymbol{0} = \boldsymbol{0},\forall k \in K,\forall \boldsymbol{\alpha} \in V k0=0,kK,αV.

证明 1:

k ⋅ 0 = k ⋅ ( 0 + 0 ) = k ⋅ 0 + k ⋅ 0 . k \cdot \boldsymbol{0} = k \cdot (\boldsymbol{0} + \boldsymbol{0}) = k \cdot \boldsymbol{0} + k \cdot \boldsymbol{0}. k0=k(0+0)=k0+k0.

显然, k ⋅ 0 ∈ V k \cdot \boldsymbol{0} \in V k0V 存在负元 − k ⋅ 0 - k \cdot \boldsymbol{0} k0,等式两边同加 − k ⋅ 0 - k \cdot \boldsymbol{0} k0,即有

k ⋅ 0 = 0 . k \cdot \boldsymbol{0} = \boldsymbol{0}. k0=0.

#

性质 5:若 k ⋅ α = 0 k \cdot \boldsymbol{\alpha} = \boldsymbol{0} kα=0,则或者 k = 0 k=0 k=0,或者 α = 0 \boldsymbol{\alpha} = \boldsymbol{0} α=0.

证明:

\quad k = 0 k=0 k=0,则由 性质 3 得证。

\quad 若 $k \ne 0 $,则

α = 1 ⋅ α = ( k − 1 ⋅ k ) ⋅ α = k − 1 ⋅ ( k ⋅ α ) = k − 1 ⋅ 0 = 0 . \boldsymbol{\alpha} = 1 \cdot \boldsymbol{\alpha} = (k^{-1} \cdot k) \cdot \boldsymbol{\alpha} = k^{-1} \cdot (k \cdot \boldsymbol{\alpha}) = k^{-1} \cdot \boldsymbol{0} = \boldsymbol{0}. α=1α=(k1k)α=k1(kα)=k10=0.

#

性质 6 ( − 1 ) ⋅ α = − α (-1)\cdot \boldsymbol{\alpha} = -\boldsymbol{\alpha} (1)α=α.

证明:

( − 1 ) ⋅ α = ( − 1 ) ⋅ α + 0 = ( − 1 ) ⋅ α + ( α + ( − α ) ) = ( − 1 ) ⋅ α + ( 1 ⋅ α + ( − α ) ) = ( ( − 1 ) ⋅ α + 1 ⋅ α ) + ( − α ) = ( ( − 1 ) + 1 ) ⋅ α + ( − α ) = 0 ⋅ α + ( − α ) = − α . \begin{aligned} (-1) \cdot \boldsymbol{\alpha} &= (-1) \cdot \boldsymbol{\alpha} + \boldsymbol{0} \\ &= (-1) \cdot \boldsymbol{\alpha} + (\boldsymbol{\alpha} + (-\boldsymbol{\alpha})) \\ &= (-1) \cdot \boldsymbol{\alpha} + (1 \cdot \boldsymbol{\alpha} + (-\boldsymbol{\alpha})) \\ &= ((-1) \cdot \boldsymbol{\alpha} + 1 \cdot \boldsymbol{\alpha}) + (-\boldsymbol{\alpha}) \\ &= ((-1)+1) \cdot \boldsymbol{\alpha} + (-\boldsymbol{\alpha}) \\ &= 0 \cdot \boldsymbol{\alpha} + (-\boldsymbol{\alpha}) \\ &= -\boldsymbol{\alpha}. \end{aligned} (1)α=(1)α+0=(1)α+(α+(α))=(1)α+(1α+(α))=((1)α+1α)+(α)=((1)+1)α+(α)=0α+(α)=α.

#


至此,我们直接从线性空间的定义涵盖的 8 8 8 条运算法则入手,分析出了 6 6 6 条性质。


参考

  1. 邱维声. 高等代数课程. 哔哩哔哩.
  2. 邱维声. 高等代数——大学高等代数课程创新教材(上册),北京:清华大学出版社,2010.06.
  3. 邱维声. 高等代数——大学高等代数课程创新教材(下册),北京:清华大学出版社,2010.10.
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值