函数序列及其一致收敛性
\quad 此前,我们已经可以用收敛数列(或收敛的数项级数)来表示或定义一个数,接下来讨论:
如何由一个收敛的函数序列(或收敛的函数项级数)来表示或定义一个函数
【示例】:
(1)证明: lim n → ∞ ( 1 + x n ) n = e x \underset{n \rightarrow \infty}{\lim}(1+\frac{x}{n})^n=e^x n→∞lim(1+nx)n=ex;
(2)证明: ∑ n = 1 ∞ ( − 1 ) n x n n = ln ( 1 + x ) \sum_{n=1}^{\infty}(-1)^{n}\frac{x^n}{n}=\ln (1+x) ∑n=1∞(−1)nnxn=ln(1+x).
对以上两个问题,先前的做法通常是将每一项中的变量视为常数,之后。我们就研究其函数性质。
函数序列
定义 1(函数序列):设 f 1 ( x ) , f 2 ( x ) , ⋯ , f n ( x ) , ⋯ f_1(x),f_2(x),\cdots,f_n(x),\cdots f1(x),f2(x),⋯,fn(x),⋯ 是具有公共定义域 E E E 的一列函数,则称其为定义在 E E E 上的一个 函数序列,或 函数列,简记作 { f n ( x ) } \{f_n(x)\} {fn(x)} 或 f n ( x ) , n = 1 , 2 , 3 , ⋯ f_n(x),n=1,2,3,\cdots fn(x),n=1,2,3,⋯。
\quad 此外,类似于数列极限,函数序列同样有极限的概念。
定义 2(极限函数):设
{
f
n
(
x
)
}
\{f_n(x)\}
{fn(x)} 是定义在集合
E
E
E 上的函数序列,若存在
x
0
∈
E
x_0 \in E
x0∈E,使得数列
f
1
(
x
0
)
,
f
2
(
x
0
)
,
⋯
,
f
n
(
x
0
)
,
⋯
f_1(x_0),f_2(x_0),\cdots,f_n(x_0),\cdots
f1(x0),f2(x0),⋯,fn(x0),⋯
收敛,则称 函数序列
{
f
n
(
x
)
}
\{f_n(x)\}
{fn(x)} 在点
x
0
x_0
x0 处 收敛,
x
0
x_0
x0 称为
{
f
n
(
x
)
}
\{f_n(x)\}
{fn(x)} 的一个 收敛点。
\quad 设 D D D 是函数序列 { f n ( x ) } \{f_n(x)\} {fn(x)} 的收敛点全体构成的集合,则称 D D D 为 { f n ( x ) } \{f_n(x)\} {fn(x)} 的 收敛域。
\quad
对于任意的
x
∈
D
⊂
E
x \in D \subset E
x∈D⊂E,若有
{
f
n
(
x
)
}
\{f_n(x)\}
{fn(x)} 的一个极限值与之对应,则由这个对应法则所确定的
D
D
D 上的函数
f
(
x
)
f(x)
f(x) 称为 函数序列
{
f
n
(
x
)
}
\{f_n(x)\}
{fn(x)} 的极限函数。即
f
(
x
)
=
lim
n
→
∞
f
n
(
x
)
,
x
∈
D
.
f(x) =\underset{n \rightarrow \infty}{\lim}f_n(x),\quad x \in D.
f(x)=n→∞limfn(x),x∈D.
或
f
n
(
x
)
→
f
(
x
)
(
n
→
∞
)
,
x
∈
D
.
f_n(x) \rightarrow f(x) \quad (n \rightarrow \infty),\quad x \in D.
fn(x)→f(x)(n→∞),x∈D.
\quad
对 定义 2
作以下说明:
(1)一般情况下,函数序列 { f n ( x ) } \{f_n(x)\} {fn(x)} 的收敛域 D D D 是一个区间;
(2)由于 f ( x ) f(x) f(x) 是通过逐点定义的方式得到的,因此称 { f n ( x ) } \{f_n(x)\} {fn(x)} 在 D D D 上 点态收敛 于 f ( x ) f(x) f(x)。
(3)由 定义 2
可知:
函数列
{
f
n
(
x
)
}
在
D
上点态收敛于
f
(
x
)
⟺
对于任意给定的
x
0
∈
D
,
都有数列
{
f
n
(
x
0
)
}
收敛于
f
(
x
0
)
.
\text{函数列}\{f_n(x)\} \text{在} D \text{上} \text{点态收敛于} f(x) \Longleftrightarrow \text{对于任意给定的} x_0 \in D,\text{都有数列} \{f_n(x_0)\} \text{收敛于} f(x_0).
函数列{fn(x)}在D上点态收敛于f(x)⟺对于任意给定的x0∈D,都有数列{fn(x0)}收敛于f(x0).
(4)"函数序列
{
f
n
(
x
)
}
\{f_n(x)\}
{fn(x)} 在
D
D
D 上点态收敛于
f
(
x
)
f(x)
f(x)" 可用 “
ϵ
−
N
\epsilon-N
ϵ−N” 语言描述:
∀
x
0
∈
D
,
∀
ϵ
>
0
,
∃
N
=
N
(
ϵ
,
x
0
)
,
∀
n
>
N
:
∣
f
n
(
x
0
)
−
f
(
x
0
)
∣
<
ϵ
.
\forall x_0 \in D,\forall \epsilon>0,\exists N=N(\epsilon,x_0),\forall n>N:|f_n(x_0)-f(x_0)|<\epsilon.
∀x0∈D,∀ϵ>0,∃N=N(ϵ,x0),∀n>N:∣fn(x0)−f(x0)∣<ϵ.
此处的
N
N
N 不仅与
ϵ
\epsilon
ϵ 有关,而且随
x
0
x_0
x0 的不同而变化。
函数序列的一致收敛性
\quad 有些函数序列不仅在收敛域上点态收敛于相应的极限函数,而且在收敛速度上具有某种整体一致性,我们称这种性质为 一致收敛性。下面给出 一致收敛性 的概念。
定义 3(函数序列的一致收敛):设函数序列
{
f
n
(
x
)
}
\{f_n(x)\}
{fn(x)}(
x
∈
E
x \in E
x∈E) 在集合
D
⊂
E
D \subset E
D⊂E 上点态收敛于
f
(
x
)
f(x)
f(x),若对于任意给定的
ϵ
>
0
\epsilon>0
ϵ>0,存在正整数
N
N
N,使得当
n
>
N
n>N
n>N 时,
∣
f
n
(
x
)
−
f
(
x
)
∣
<
ϵ
\left|f_n(x)-f(x)\right|<\epsilon
∣fn(x)−f(x)∣<ϵ
对一切
x
∈
D
x \in D
x∈D 成立,则称 函数序列
{
f
n
(
x
)
}
\{f_n(x)\}
{fn(x)} 在
D
D
D 上 一致收敛 于
f
(
x
)
f(x)
f(x),记作:
f
n
(
x
)
⇒
D
f
(
x
)
(
n
→
∞
)
,
x
∈
D
.
f_n(x) \xRightarrow{D} f(x)\quad (n \rightarrow \infty),\quad x \in D.
fn(x)Df(x)(n→∞),x∈D.
\quad
对 定义 3
作以下说明:
(1)“函数序列
{
f
n
(
x
)
}
\{f_n(x)\}
{fn(x)} 在
D
D
D 上 一致收敛于
f
(
x
)
f(x)
f(x)” 用 “
ϵ
−
N
\epsilon-N
ϵ−N” 语言描述:
∀
ϵ
>
0
,
∃
N
=
N
(
ϵ
)
,
∀
n
>
N
,
∀
x
∈
D
:
∣
f
n
(
x
)
−
f
(
x
)
∣
<
ϵ
.
\forall \epsilon>0,\exists N=N(\epsilon),\forall n>N,\forall x \in D:|f_n(x)-f(x)|<\epsilon.
∀ϵ>0,∃N=N(ϵ),∀n>N,∀x∈D:∣fn(x)−f(x)∣<ϵ.
(2)“函数序列
{
f
n
(
x
)
}
\{f_n(x)\}
{fn(x)} 在
D
D
D 上 不一致收敛于
f
(
x
)
f(x)
f(x)”,按照量词取反的对偶原则,有:
∃
ϵ
0
>
0
,
∀
N
,
∃
n
>
N
,
∃
x
0
∈
D
:
∣
f
n
(
x
0
)
−
f
(
x
0
)
∣
≥
ϵ
0
.
\exists \epsilon_0>0,\forall N,\exists n>N,\exists x_0 \in D:|f_n(x_0)-f(x_0)|\ge \epsilon_0.
∃ϵ0>0,∀N,∃n>N,∃x0∈D:∣fn(x0)−f(x0)∣≥ϵ0.
(3)“函数序列
{
f
n
(
x
)
}
\{f_n(x)\}
{fn(x)} 在
D
D
D 上 一致收敛于
f
(
x
)
f(x)
f(x)” 的几何意义:
对任意给定的
ϵ
>
0
,
存在正整数
N
,
当
n
>
N
时
,
曲线
y
=
f
n
(
x
)
都将落在以曲线
y
=
f
(
x
)
−
ϵ
与
y
=
f
(
x
)
+
ϵ
为边的带状区域
.
\text{对任意给定的}\epsilon>0,\text{存在正整数}N,\text{当}n>N\text{时},\text{曲线} y=f_n(x)\text{都将落在以曲线}y=f(x)-\epsilon\text{与}y=f(x)+\epsilon\text{为边的带状区域}.
对任意给定的ϵ>0,存在正整数N,当n>N时,曲线y=fn(x)都将落在以曲线y=f(x)−ϵ与y=f(x)+ϵ为边的带状区域.
定义 4(函数序列的内闭一致收敛):设函数序列 { f n ( x ) } \{f_n(x)\} {fn(x)}( x ∈ E x \in E x∈E) 在集合 D ⊂ E D \subset E D⊂E 上点态收敛于 f ( x ) f(x) f(x),若对于任意的闭区间 [ a , b ] ⊂ D [a,b] \subset D [a,b]⊂D, { f n ( x ) } \{f_n(x)\} {fn(x)} 在 [ a , b ] [a,b] [a,b] 上一致收敛于 f ( x ) f(x) f(x),则称 函数序列 { f n ( x ) } \{f_n(x)\} {fn(x)} 在 D D D 上 内闭一致收敛 于 f ( x ) f(x) f(x)。
\quad
对 定义 4
作以下说明:
(1)在 D D D 上一致收敛的函数序列一定也在 D D D 上内闭一致收敛,但反之不成立。
函数序列一致收敛性的判别法
\quad 设函数序列 { f n ( x ) } \{f_n(x)\} {fn(x)}( x ∈ E x \in E x∈E) 在集合 D ⊂ E D \subset E D⊂E 上点态收敛于 f ( x ) f(x) f(x),思考:什么情况下, { f n ( x ) } \{f_n(x)\} {fn(x)} 在 D D D 上一致收敛?
\quad 下面,给出函数序列一致收敛的几个判别方法(三个充要条件)。
定理 1:设函数序列
{
f
n
(
x
)
}
\{f_n(x)\}
{fn(x)}(
x
∈
E
x \in E
x∈E) 在集合
D
⊂
E
D \subset E
D⊂E 上点态收敛于
f
(
x
)
f(x)
f(x),则
{
f
n
(
x
)
}
\{f_n(x)\}
{fn(x)} 在
D
D
D 上一致收敛于
f
(
x
)
f(x)
f(x) 的充分必要条件为:
lim
n
→
∞
sup
x
∈
D
∣
f
n
(
x
)
−
f
(
x
)
∣
=
0.
\underset{n \rightarrow \infty}{\lim}{\underset{x \in D}{\sup}|f_n(x)-f(x)|}=0.
n→∞limx∈Dsup∣fn(x)−f(x)∣=0.
定理 2:设函数序列
{
f
n
(
x
)
}
\{f_n(x)\}
{fn(x)}(
x
∈
E
x \in E
x∈E) 在集合
D
⊂
E
D \subset E
D⊂E 上点态收敛于
f
(
x
)
f(x)
f(x),则
{
f
n
(
x
)
}
\{f_n(x)\}
{fn(x)} 在
D
D
D 上一致收敛于
f
(
x
)
f(x)
f(x) 的充分必要条件为:对任意的数列
{
x
n
}
\{x_n\}
{xn},
x
n
∈
D
x_n \in D
xn∈D,成立
lim
n
→
∞
(
f
n
(
x
n
)
−
f
(
x
n
)
)
=
0.
\underset{n \rightarrow \infty}{\lim}(f_n(x_n)-f(x_n))=0.
n→∞lim(fn(xn)−f(xn))=0.
\quad
由 定理 2
可得 推论 1
。
推论 1:设函数序列
{
f
n
(
x
)
}
\{f_n(x)\}
{fn(x)}(
x
∈
E
x \in E
x∈E) 在集合
D
⊂
E
D \subset E
D⊂E 上点态收敛于
f
(
x
)
f(x)
f(x),则
{
f
n
(
x
)
}
\{f_n(x)\}
{fn(x)} 在
D
D
D 上不一致收敛于
f
(
x
)
f(x)
f(x) 的充分必要条件为:存在数列
{
x
n
}
\{x_n\}
{xn},
x
n
∈
D
x_n \in D
xn∈D,成立
lim
n
→
∞
(
f
n
(
x
n
)
−
f
(
x
n
)
)
≠
0.
\underset{n \rightarrow \infty}{\lim}(f_n(x_n)-f(x_n))\ne0.
n→∞lim(fn(xn)−f(xn))=0.
注:推论 1
常用来判断函数序列的不一致收敛。
定理 3(函数序列的Cauchy 收敛准则): 设函数序列
{
f
n
(
x
)
}
\{f_n(x)\}
{fn(x)}(
x
∈
E
x \in E
x∈E) 在集合
D
⊂
E
D \subset E
D⊂E 上点态收敛于
f
(
x
)
f(x)
f(x),则
{
f
n
(
x
)
}
\{f_n(x)\}
{fn(x)} 在
D
D
D 上一致收敛于
f
(
x
)
f(x)
f(x) 的充分必要条件为:对于任意给定的
ϵ
>
0
\epsilon>0
ϵ>0,存在正整数
N
N
N,使得当
n
,
m
>
N
n,m>N
n,m>N 时,
∣
f
n
(
x
)
−
f
(
x
)
∣
<
ϵ
\left|f_n(x)-f(x)\right|<\epsilon
∣fn(x)−f(x)∣<ϵ
对一切
x
∈
D
x \in D
x∈D 成立。
一致收敛的函数序列的性质
\quad 下面,来研究一致收敛的函数序列的性质。
定理 4(连续性定理):设函数序列 { f n ( x ) } \{f_n(x)\} {fn(x)} 在 [ a , b ] [a,b] [a,b] 上一致收敛于 f ( x ) f(x) f(x),若 { f n ( x ) } \{f_n(x)\} {fn(x)} 中的每一项都在 [ a , b ] [a,b] [a,b] 上连续,则 f ( x ) f(x) f(x) 也在 [ a , b ] [a,b] [a,b] 上连续。
\quad
由 定理 4
可得
lim
x
→
x
0
lim
n
→
∞
f
n
(
x
)
=
lim
x
→
x
0
f
(
x
)
=
f
(
x
0
)
=
lim
n
→
∞
f
n
(
x
0
)
=
lim
n
→
∞
lim
x
→
x
0
f
n
(
x
)
\underset{x \rightarrow x_0}{\lim}\underset{n \rightarrow \infty}{\lim}f_n(x)=\underset{x \rightarrow x_0}{\lim}f(x)=f(x_0)=\underset{n \rightarrow \infty}{\lim}f_n(x_0)=\underset{n \rightarrow \infty}{\lim}\underset{x \rightarrow x_0}{\lim}f_n(x)
x→x0limn→∞limfn(x)=x→x0limf(x)=f(x0)=n→∞limfn(x0)=n→∞limx→x0limfn(x)
也就是说,两个极限运算可以交换次序。
定理 5:设函数序列
{
f
n
(
x
)
}
\{f_n(x)\}
{fn(x)} 在
[
a
,
b
]
[a,b]
[a,b] 上一致收敛于
f
(
x
)
f(x)
f(x),若
{
f
n
(
x
)
}
\{f_n(x)\}
{fn(x)} 中的每一项都在
[
a
,
b
]
[a,b]
[a,b] 上连续,则
f
(
x
)
f(x)
f(x) 在
[
a
,
b
]
[a,b]
[a,b] 上可积,且
∫
a
b
f
(
x
)
d
x
=
lim
n
→
∞
∫
a
b
f
n
(
x
)
d
x
.
\int_{a}^{b}f(x)dx=\underset{n \rightarrow \infty}{\lim}\int_{a}^{b}f_n(x)dx.
∫abf(x)dx=n→∞lim∫abfn(x)dx.
\quad
由 定理 4
可得
∫
a
b
lim
n
→
∞
f
n
(
x
)
d
x
=
lim
n
→
∞
∫
a
b
f
n
(
x
)
d
x
.
\int_{a}^{b}\underset{n \rightarrow \infty}{\lim}f_n(x)dx=\underset{n \rightarrow \infty}{\lim}\int_{a}^{b}f_n(x)dx.
∫abn→∞limfn(x)dx=n→∞lim∫abfn(x)dx.
也就是说,极限运算与积分运算可以交换次序。
定理 6:设函数序列 { f n ( x ) } \{f_n(x)\} {fn(x)} 在 [ a , b ] [a,b] [a,b] 上点态收敛于 f ( x ) f(x) f(x),若
(1) f n ( x ) f_n(x) fn(x)( n = 1 , 2 , 3 , ⋯ n=1,2,3,\cdots n=1,2,3,⋯)在 [ a , b ] [a,b] [a,b] 上有连续的导函数;
(2)导函数序列 { f n ′ ( x ) } \{f_n'(x)\} {fn′(x)} 在 [ a , b ] [a,b] [a,b] 上一致收敛于 σ ( x ) \sigma(x) σ(x),
则
f
(
x
)
f(x)
f(x) 在
[
a
,
b
]
[a,b]
[a,b] 上可导,且
d
d
x
f
(
x
)
=
σ
(
x
)
.
\frac{d}{dx}f(x)=\sigma(x).
dxdf(x)=σ(x).
\quad
由 定理 6
可得
d
d
x
lim
n
→
∞
f
n
(
x
)
=
lim
n
→
∞
d
d
x
f
n
(
x
)
.
\frac{d}{dx}\underset{n \rightarrow \infty}{\lim}f_n(x)=\underset{n \rightarrow \infty}{\lim}\frac{d}{dx}f_n(x).
dxdn→∞limfn(x)=n→∞limdxdfn(x).
也就是说,极限运算与求导运算可以交换次序。
\quad
函数序列
{
f
n
(
x
)
}
\{f_n(x)\}
{fn(x)} 在闭区间
[
a
,
b
]
[a,b]
[a,b] 上连续(即每一项都连续),且点态收敛于连续函数
f
(
x
)
f(x)
f(x),并不能说明:函数序列
{
f
n
(
x
)
}
\{f_n(x)\}
{fn(x)} 在
[
a
,
b
]
[a,b]
[a,b] 上一致收敛于
f
(
x
)
f(x)
f(x)。也就是说,定理 4
的逆命题并不成立!但在某些条件下,由
f
(
x
)
f(x)
f(x) 的连续性可得
{
f
n
(
x
)
}
\{f_n(x)\}
{fn(x)} 在
[
a
,
b
]
[a,b]
[a,b] 上的一致连续性,即下面的 Dini 定理
。
定理 7(Dini 定理):设函数序列 { f n ( x ) } \{f_n(x)\} {fn(x)} 在闭区间 [ a , b ] [a,b] [a,b] 上点态收敛于 f ( x ) f(x) f(x),若
(1) f n ( x ) f_n(x) fn(x)( n = 1 , 2 , 3 , ⋯ n=1,2,3,\cdots n=1,2,3,⋯)在 [ a , b ] [a,b] [a,b] 上连续;
(2) f ( x ) f(x) f(x) 在 [ a , b ] [a,b] [a,b] 上连续;
(3) { f n ( x ) } \{f_n(x)\} {fn(x)} 关于 n n n 单调,即对任意固定的 x ∈ [ a , b ] x \in [a,b] x∈[a,b], { f n ( x ) } \{f_n(x)\} {fn(x)} 是单调数列,
则函数序列 { f n ( x ) } \{f_n(x)\} {fn(x)} 在 [ a , b ] [a,b] [a,b] 上一致收敛于 f ( x ) f(x) f(x)。
参考文献
[1] 陈纪修,于崇华,金路著. 数学分析 上册. 第2版. 北京:高等教育出版社, 2004.06.
[2] 华东师范大学数学系编. 数学分析 上册. 第4版. 北京:高等教育出版社, 2010.07.