数学分析习题课讲义习题-第2章-2.4

2.4 Cauchy 命题与 Stolz 定理

2.4.3 练习题

1. 设 lim ⁡ n → ∞ x n = + ∞ \underset{n \rightarrow \infty}{\lim}x_{n}=+\infty nlimxn=+,证明:

lim ⁡ n → ∞ x 1 + x 2 + ⋯ + x n n = + ∞ . \lim_{n \rightarrow \infty}\frac{x_{1} +x_{2}+\cdots + x_{n}}{n} = +\infty. nlimnx1+x2++xn=+∞.

证 1: { x n } \{x_{n}\} {xn} 是正无穷大量,则对于任意给定的 G > 0 G>0 G>0,存在某个正整数 N 1 N_{1} N1,使得当 n > N 1 n>N_{1} n>N1 时,成立 x n > 2 G x_{n}>2G xn>2G.

分析可知,当 n n n 充分大时(不妨假设 n > N 1 n>N_{1} n>N1 时就已经满足),有

x 1 + x 2 + ⋯ + x n n > 0 ⟺ ∣ x 1 + x 2 + ⋯ + x n n ∣ = x 1 + x 2 + ⋯ + x n n . \frac{x_{1}+x_{2} +\cdots + x_{n}}{n}>0 \Longleftrightarrow \left|\frac{x_{1}+x_{2} +\cdots + x_{n}}{n}\right| = \frac{x_{1}+x_{2} +\cdots + x_{n}}{n}. nx1+x2++xn>0 nx1+x2++xn =nx1+x2++xn.

由三角不等式可得

x 1 + x 2 + ⋯ + x n n = ∣ x 1 + x 2 + ⋯ + x n n ∣ = ∣ ( x N 1 + 1 + x N 1 + 2 + ⋯ + x n n ) − ( − x 1 + x 2 + ⋯ + x N 1 n ) ∣ ≥ ∣ x N 1 + 1 + x N 1 + 2 + ⋯ + x n n ∣ − ∣ x 1 + x 2 + ⋯ + x N 1 n ∣ > n − N 1 n ⋅ ( 2 G ) − M n . \begin{aligned} \frac{x_{1}+x_{2} +\cdots + x_{n}}{n} &= \left|\frac{x_{1}+x_{2} +\cdots + x_{n}}{n}\right| \\ &= \left|\left(\frac{x_{N_{1}+1}+x_{N_{1}+2}+\cdots+x_{n}}{n}\right)-\left(-\frac{x_{1}+x_{2}+\cdots + x_{N_{1}}}{n}\right)\right| \\ &\ge \left|\frac{x_{N_{1}+1}+x_{N_{1}+2}+\cdots+x_{n}}{n}\right| - \left|\frac{x_{1}+x_{2}+\cdots + x_{N_{1}}}{n}\right| \\ &>\frac{n-N_{1}}{n}\cdot(2G) - \frac{M}{n}. \end{aligned} nx1+x2++xn= nx1+x2++xn = (nxN1+1+xN1+2++xn)(nx1+x2++xN1) nxN1+1+xN1+2++xn nx1+x2++xN1 >nnN1(2G)nM.

其中, M = ∣ x 1 + x 2 + ⋯ + x N 1 ∣ M=|x_{1}+x_{2}+\cdots + x_{N_{1}}| M=x1+x2++xN1 为一实数。

N 2 = max ⁡ { 4 N 1 , 2 M G } N_{2} = \max \{4N_{1},\frac{2M}{G}\} N2=max{4N1,G2M},则当 n > N 2 n>N_{2} n>N2 时,成立

x 1 + x 2 + ⋯ + x n n > G . \frac{x_{1}+x_{2} +\cdots + x_{n}}{n} >G. nx1+x2++xn>G.

得证。

证毕

证 2:与 证 1 基本相同,不同之处在于使用三角不等式时,利用了一种“折半”的思想:

x 1 + x 2 + ⋯ + x n n = ∣ x 1 + x 2 + ⋯ + x n n ∣ = ∣ ( x N 1 + 1 + x N 1 + 2 + ⋯ + x n n ) − ( − x 1 + x 2 + ⋯ + x N 1 n ) ∣ ≥ ∣ x N 1 + 1 + x N 1 + 2 + ⋯ + x n n ∣ − ∣ x 1 + x 2 + ⋯ + x N 1 n ∣ > 1 2 ⋅ ( 3 G ) − 1 2 ⋅ G = G . \begin{aligned} \frac{x_{1}+x_{2} +\cdots + x_{n}}{n} &= \left|\frac{x_{1}+x_{2} +\cdots + x_{n}}{n}\right| \\ &= \left|\left(\frac{x_{N_{1}+1}+x_{N_{1}+2}+\cdots+x_{n}}{n}\right)-\left(-\frac{x_{1}+x_{2}+\cdots + x_{N_{1}}}{n}\right)\right| \\ &\ge \left|\frac{x_{N_{1}+1}+x_{N_{1}+2}+\cdots+x_{n}}{n}\right| - \left|\frac{x_{1}+x_{2}+\cdots + x_{N_{1}}}{n}\right| \\ &>\frac{1}{2} \cdot (3G) - \frac{1}{2} \cdot G = G. \end{aligned} nx1+x2++xn= nx1+x2++xn = (nxN1+1+xN1+2++xn)(nx1+x2++xN1) nxN1+1+xN1+2++xn nx1+x2++xN1 >21(3G)21G=G.

证毕

2. 设 { x n } \{x_{n}\} {xn} 单调增加, lim ⁡ n → ∞ x 1 + x 2 + ⋯ + x n n = a \underset{n \rightarrow \infty}{\lim}\frac{x_{1}+x_{2}+\cdots+x_{n}}{n}=a nlimnx1+x2++xn=a,证明: { x n } \{x_{n}\} {xn} 收敛于 a a a.

证:分析可知,对于单调增加的数列而言,若有界,则由 单调有界数列收敛定理 ,数列收敛;若无界,则发散至正无穷。对于 { x n } \{x_{n}\} {xn} 而言,若有界,则收敛,不妨设

lim ⁡ n → ∞ x n = b . \lim_{n \rightarrow \infty}x_{n} = b. nlimxn=b.

则由 Cauchy 命题 可知, a = b a = b a=b.

{ x n } \{x_{n}\} {xn} 无界,则

lim ⁡ n → ∞ x n = + ∞ . \lim_{n \rightarrow \infty}x_{n} = +\infty. nlimxn=+∞.

同样由 Cauchy 命题 可知, a = + ∞ a = +\infty a=+.

综上,问题得证。

证毕

3. 设 { a 2 k − 1 } \{a_{2k-1}\} {a2k1} 收敛于 a a a { a 2 k } \{a_{2k}\} {a2k} 收敛于 b b b,且 a ≠ b a \ne b a=b,求

lim ⁡ n → ∞ a 1 + a 2 + ⋯ + a n n . \lim_{n \rightarrow \infty}\frac{a_{1} +a_{2}+\cdots + a_{n}}{n}. nlimna1+a2++an.

解:先考虑数列 { x n } \{x_{n}\} {xn},其中

x n = a 1 + a 2 + ⋯ + a n n . x_{n} = \frac{a_{1} +a_{2}+\cdots + a_{n}}{n}. xn=na1+a2++an.

于是,对于 { x n } \{x_{n}\} {xn} 的奇数列 { x 2 k − 1 } \{x_{2k-1}\} {x2k1} 与 偶数列 { x 2 k } \{x_{2k}\} {x2k} 而言,

x 2 k − 1 = a 1 + a 2 + ⋯ + a 2 k − 1 2 k − 1 , x 2 k = a 1 + a 2 + ⋯ + a 2 k 2 k . x_{2k-1} = \frac{a_{1} + a_{2} + \cdots + a_{2k-1}}{2k-1},\quad x_{2k} = \frac{a_{1}+a_{2}+\cdots+a_{2k}}{2k}. x2k1=2k1a1+a2++a2k1,x2k=2ka1+a2++a2k.

显然,

x 2 k − 1 = a 1 + a 3 + ⋯ + a 2 k − 1 k ⋅ k 2 k − 1 + a 2 + a 4 + ⋯ + a 2 k − 2 k − 1 ⋅ k − 1 2 k − 1 , x 2 k = a 1 + a 3 + ⋯ + a 2 k − 1 k ⋅ k 2 k + a 2 + a 4 + ⋯ + a 2 k k ⋅ k 2 k . \begin{aligned} &x_{2k-1} = \frac{a_{1}+a_{3}+\cdots+a_{2k-1}}{k} \cdot \frac{k}{2k-1} +\frac{a_{2}+a_{4}+\cdots+a_{2k-2}}{k-1} \cdot \frac{k-1}{2k-1}, \\ &x_{2k} = \frac{a_{1}+a_{3}+\cdots+a_{2k-1}}{k} \cdot \frac{k}{2k} + \frac{a_{2} +a_{4} +\cdots + a_{2k}}{k} \cdot \frac{k}{2k}. \end{aligned} x2k1=ka1+a3++a2k12k1k+k1a2+a4++a2k22k1k1,x2k=ka1+a3++a2k12kk+ka2+a4++a2k2kk.

Cauchy 命题

lim ⁡ k → ∞ x 2 k − 1 = a + b 2 , lim ⁡ k → ∞ x 2 k = a + b 2 . \lim_{k \rightarrow \infty}x_{2k-1} = \frac{a+b}{2},\quad \lim_{k \rightarrow \infty}x_{2k} = \frac{a+b}{2}. klimx2k1=2a+b,klimx2k=2a+b.

因此 { x n } \{x_{n}\} {xn} 收敛,且

lim ⁡ n → ∞ x n = a + b 2 , \lim_{n \rightarrow \infty}x_{n} = \frac{a+b}{2}, nlimxn=2a+b,

证毕

附注题3 说明了 Cauchy 命题 的逆命题不成立。

4. 若 lim ⁡ n → ∞ ( a n − a n − 1 ) = d \underset{n \rightarrow \infty}{\lim}(a_{n}-a_{n-1})=d nlim(anan1)=d,证明: lim ⁡ n → ∞ a n n = d \underset{n \rightarrow \infty}{\lim}{\frac{a_{n}}{n}}=d nlimnan=d.

证 1:直接使用 Stolz 定理,得证。

证毕

证 2:构造数列 { x n } \{x_{n}\} {xn},其中

x n = { a 1 n = 1 , a n − a n − 1 n > 2. x_{n} = \begin{cases} &a_{1} &n=1, \\ &a_{n} -a_{n-1} &n>2. \end{cases} xn={a1anan1n=1,n>2.

lim ⁡ n → ∞ x n = d . \lim_{n \rightarrow \infty}x_{n} = d. nlimxn=d.

Cauchy 命题

lim ⁡ n → ∞ a n n = lim ⁡ n → x 1 + x 2 + ⋯ + x n n = d . \lim_{n \rightarrow \infty}\frac{a_{n}}{n} = \lim_{n \rightarrow}\frac{x_{1}+x_{2}+\cdots+x_{n}}{n} = d. nlimnan=nlimnx1+x2++xn=d.

证毕

附注题 4 也被说为 Cauchy 命题 的另一形式。

5. 设 { a n } \{a_{n}\} {an} 为正数列,且收敛于 A A A,证明:

lim ⁡ n → ∞ ( a 1 a 2 ⋯ a n ) 1 n = A . \lim_{n \rightarrow \infty}\left(a_{1}a_{2}\cdots a_{n}\right)^{\frac{1}{n}} = A. nlim(a1a2an)n1=A.

证:由题意得

lim ⁡ n → ∞ x n = A . \lim_{n \rightarrow \infty}x_{n} = A. nlimxn=A.

由于 { x n } \{x_{n}\} {xn} 为正数列,因此 A ≥ 0 A \ge 0 A0.

(1)若 A = 0 A=0 A=0,则由 Cauchy 命题 可得

lim ⁡ n → ∞ x 1 + x 2 + ⋯ + x n n = 0. \lim_{n \rightarrow \infty} \frac{x_{1}+x_{2}+\cdots +x_{n}}{n} = 0. nlimnx1+x2++xn=0.

算术-几何平均值不等式 可得

0 < ( x 1 x 2 ⋯ x n ) 1 n < x 1 + x 2 + ⋯ + x n n . 0< \left(x_{1}x_{2}\cdots x_{n}\right)^{\frac{1}{n}}< \frac{x_{1}+x_{2}+\cdots +x_{n}}{n} . 0<(x1x2xn)n1<nx1+x2++xn.

由数列极限的夹逼性可得

lim ⁡ n → ( x 1 x 2 ⋯ x n ) 1 n = A = 0. \lim_{n \rightarrow}\left(x_{1}x_{2}\cdots x_{n}\right)^{\frac{1}{n}} = A=0. nlim(x1x2xn)n1=A=0.

(2)若 A ≠ 0 A \ne 0 A=0,则有

lim ⁡ n → ∞ 1 x n = 1 A . \lim_{n \rightarrow \infty}\frac{1}{x_{n}} = \frac{1}{A}. nlimxn1=A1.

Cauchy 命题 可得

lim ⁡ n → ∞ 1 x n + 1 x 2 + ⋯ + 1 x n n = 1 A . \lim_{n \rightarrow \infty}\frac{\frac{1}{x_{n}}+\frac{1}{x_{2}}+\cdots+\frac{1}{x_{n}}}{n} = \frac{1}{A}. nlimnxn1+x21++xn1=A1.

再由 算术-几何平均值不等式

n 1 x n + 1 x 2 + ⋯ + 1 x n ≤ ( x 1 x 2 ⋯ x n ) 1 n ≤ x 1 + x 2 + ⋯ + x n n . \frac{n}{\frac{1}{x_{n}}+\frac{1}{x_{2}}+\cdots+\frac{1}{x_{n}}} \le \left(x_{1}x_{2}\cdots x_{n}\right)^{\frac{1}{n}} \le \frac{x_{1}+x_{2}+\cdots+x_{n}}{n}. xn1+x21++xn1n(x1x2xn)n1nx1+x2++xn.

由数列极限的夹逼性,则

lim ⁡ n → ( x 1 x 2 ⋯ x n ) 1 n = A . \lim_{n \rightarrow}\left(x_{1}x_{2}\cdots x_{n}\right)^{\frac{1}{n}} = A. nlim(x1x2xn)n1=A.

证毕

6. 设 { a n } \{a_{n}\} {an} 为正数列,且存在极限 lim ⁡ n → ∞ a n + 1 a n = l \underset{n \rightarrow \infty}{\lim}\frac{a_{n+1}}{a_{n}} = l nlimanan+1=l,证明: lim ⁡ n → ∞ a n n = l \underset{n \rightarrow \infty}{\lim}\sqrt[n]{a_{n}}=l nlimnan =l.

证:构造一个数列 { y n } \{y_{n}\} {yn},其中

x n = { a 1 n = 1 , a n a n − 1 n ≥ 2. x_{n} = \begin{cases} & a_{1} &n=1,\\ & \frac{a_{n}}{a_{n-1}} &n \ge 2. \end{cases} xn={a1an1ann=1,n2.

lim ⁡ n → ∞ x n = l . \lim_{n \rightarrow \infty}x_{n} = l. nlimxn=l.

题5 结论,

lim ⁡ n → ∞ a n n = lim ⁡ n → ∞ ( x 1 x 2 ⋯ x n ) 1 n = l . \lim_{n \rightarrow \infty}\sqrt[n]{a_{n}} = \lim_{n \rightarrow \infty}\left(x_{1}x_{2}\cdots x_{n}\right)^{\frac{1}{n}} = l. nlimnan =nlim(x1x2xn)n1=l.

证毕

7. 设 lim ⁡ n ⇝ ∞ ( x n − x n − 2 ) = 0 \underset{n \rightsquigarrow \infty}{\lim}(x_{n}-x_{n-2})=0 nlim(xnxn2)=0,证明:

lim ⁡ n → ∞ x n n = 0. \lim_{n \rightarrow \infty}\frac{x_{n}}{n} = 0. nlimnxn=0.

证:构造数列 { y n } \{y_{n}\} {yn},其中

y n = { x 1 n = 1 , x 2 n = 2 , x n − x n − 2 n > 2. y_{n} = \begin{cases} &x_{1} &n=1,\\ &x_{2} &n=2,\\ &x_{n}-x_{n-2} &n > 2. \end{cases} yn= x1x2xnxn2n=1,n=2,n>2.

于是

lim ⁡ n → ∞ y n = 0. \lim_{n \rightarrow \infty}y_{n} = 0. nlimyn=0.

考虑 { y n } \{y_{n}\} {yn} 的奇数子列 { y 2 k − 1 } \{y_{2k-1}\} {y2k1} 与偶数子列 { y 2 k } \{y_{2k}\} {y2k},有

lim ⁡ k → ∞ y 2 k − 1 = lim ⁡ k → ∞ ( x 2 k − 1 − x 2 k − 3 ) = 0 , lim ⁡ k → ∞ y 2 k = lim ⁡ k → ∞ ( x 2 k − x 2 k − 2 ) = 0. \begin{aligned} &\lim_{k \rightarrow \infty} y_{2k-1} = \lim_{k \rightarrow \infty}(x_{2k-1}-x_{2k-3}) = 0, \\ &\lim_{k \rightarrow \infty} y_{2k} = \lim_{k \rightarrow \infty}(x_{2k}-x_{2k-2}) = 0. \end{aligned} klimy2k1=klim(x2k1x2k3)=0,klimy2k=klim(x2kx2k2)=0.

对于两个子列分别应用 题 4 的结论,有

lim ⁡ k → ∞ ( x 2 k − 1 − x 2 k − 3 ) = 0 ⟹ lim ⁡ k → ∞ x 2 k − 1 k = 0 , lim ⁡ k → ∞ ( x 2 k − x 2 k − 2 ) = 0 ⟹ lim ⁡ k → ∞ x 2 k k = 0. \begin{aligned} &\lim_{k \rightarrow \infty}(x_{2k-1}-x_{2k-3}) = 0 \Longrightarrow \lim_{k \rightarrow \infty}\frac{x_{2k-1}}{k} = 0, \\ &\lim_{k \rightarrow \infty}(x_{2k}-x_{2k-2}) = 0 \Longrightarrow \lim_{k \rightarrow \infty}\frac{x_{2k}}{k} = 0. \end{aligned} klim(x2k1x2k3)=0klimkx2k1=0,klim(x2kx2k2)=0klimkx2k=0.

构造数列 { z n } \{z_{n}\} {zn},其中

z n = x n n . z_{n} = \frac{x_{n}}{n}. zn=nxn.

对于 { z n } \{z_{n}\} {zn} 的奇数列 { z 2 k − 1 } \{z_{2k-1}\} {z2k1},有

lim ⁡ k → ∞ x 2 k − 1 2 k − 1 = lim ⁡ k → ∞ ( x 2 k − 1 k ⋅ k 2 k − 1 ) = 0. \lim_{k \rightarrow \infty}\frac{x_{2k-1}}{2k-1} = \lim_{k \rightarrow \infty}\left(\frac{x_{2k-1}}{k} \cdot \frac{k}{2k-1}\right) = 0. klim2k1x2k1=klim(kx2k12k1k)=0.

对于 { z n } \{z_{n}\} {zn} 的偶数列 { z 2 k } \{z_{2k}\} {z2k},有

lim ⁡ k → ∞ x 2 k 2 k = lim ⁡ k → ∞ ( x 2 k k ⋅ k 2 k ) = 0. \lim_{k \rightarrow \infty}\frac{x_{2k}}{2k} = \lim_{k \rightarrow \infty}\left(\frac{x_{2k}}{k} \cdot \frac{k}{2k}\right) = 0. klim2kx2k=klim(kx2k2kk)=0.

所以 { z n } \{z_{n}\} {zn} 的奇数列与偶数列收敛于同一极限 0 0 0,从而 { z n } \{z_{n}\} {zn} 收敛于 0 0 0.

证毕

8. 设 lim ⁡ n → ∞ ( x n − x n − 2 ) = 0 \underset{n \rightarrow \infty}{\lim}\left(x_{n}-x_{n-2}\right)=0 nlim(xnxn2)=0,证明:

lim ⁡ n → ∞ x n − x n − 1 n = 0. \lim_{n \rightarrow \infty}\frac{x_{n}-x_{n-1}}{n} = 0. nlimnxnxn1=0.

9. 设数列 { a n } \{a_{n}\} {an} 满足条件 0 < a 1 < 1 0<a_{1}<1 0<a1<1 a n + 1 = a n ( 1 − a n ) a_{n+1} = a_{n}(1-a_{n}) an+1=an(1an),证明:

lim ⁡ n → ∞ n a n = 1. \lim_{n \rightarrow \infty}na_{n} = 1. nlimnan=1.

证:利用数学归纳法,容易证明 0 < a n < 1 ,   ∀ n   ∈ N + 0<a_{n}<1,~ \forall n ~ \in \mathbb{N}^{+} 0<an<1, n N+.

根据递推公式,可得

a n + 1 − a n = − a n 2 < 0. a_{n+1} - a_{n} = -a_{n}^{2} < 0. an+1an=an2<0.

因此 { a n } \{a_{n}\} {an} 单调减小且有下界。由 单调有界数列收敛定理 { a n } \{a_{n}\} {an} 收敛。

不妨设 lim ⁡ n → ∞ a n = a \underset{n \rightarrow \infty}{\lim}a_{n}=a nliman=a,则对递推公式两端同取极限,可得

lim ⁡ n → ∞ a n = 0. \lim_{n \rightarrow \infty}a_{n} = 0. nliman=0.

因此
lim ⁡ n → ∞ 1 a n = + ∞ . \lim_{n \rightarrow \infty}\frac{1}{a_{n}}=+\infty. nliman1=+∞.

{ 1 a n } \{\frac{1}{a_{n}}\} {an1} 显然是单调增加的,由 Stolz 定理,可得

lim ⁡ n → ∞ n a n = n 1 a n = lim ⁡ n → ∞ ( n + 1 ) − n 1 a n + 1 − 1 a n = lim ⁡ n → ∞ ( 1 − a n ) = 1. \lim_{n \rightarrow \infty}na_{n} = \frac{n}{\frac{1}{a_{n}}}=\lim_{n \rightarrow \infty}\frac{(n+1)-n}{\frac{1}{a_{n+1}}-\frac{1}{a_{n}}} = \lim_{n \rightarrow \infty}(1-a_{n}) = 1. nlimnan=an1n=nliman+11an1(n+1)n=nlim(1an)=1.

证毕

10. 若 lim ⁡ n → ∞ a n = α \underset{n \rightarrow \infty}{\lim}a_{n} = \alpha nliman=α lim ⁡ n → ∞ b n = β \underset{n \rightarrow \infty}{\lim}b_{n} = \beta nlimbn=β,证明:

lim ⁡ n → ∞ a 1 b n + a 2 b n − 1 + ⋯ + a n b 1 n = α β . \lim_{n \rightarrow \infty} \frac{a_{1}b_{n}+a_{2}b_{n-1}+\cdots+a_{n}b_{1}}{n} = \alpha\beta. nlimna1bn+a2bn1++anb1=αβ.

证:构造两个数列 { x n } \{x_{n}\} {xn} { y n } \{y_{n}\} {yn},其中

a n = a + x n , b n = b + y n . a_{n} = a+x_{n},\quad b_{n} = b+y_{n}. an=a+xn,bn=b+yn.

显然,

lim ⁡ n → ∞ x n = lim ⁡ n → ∞ y n = 0. \lim_{n \rightarrow \infty}x_{n} = \lim_{n \rightarrow\infty}y_{n} = 0. nlimxn=nlimyn=0.

a 1 b n + a 2 b n − 1 + ⋯ + a n b 1 n = a n ⋅ ∑ k = 1 n y k + b n ⋅ ∑ k = 1 n x k + 1 n ∑ k = 1 n x k y n − k + α β . \frac{a_{1}b_{n}+a_{2}b_{n-1}+\cdots+a_{n}b_{1}}{n} = \frac{a}{n}\cdot \sum_{k=1}^{n}y_{k} + \frac{b}{n} \cdot \sum_{k=1}^{n}x_{k} + \frac{1}{n}\sum_{k=1}^{n}x_{k}y_{n-k} + \alpha \beta. na1bn+a2bn1++anb1=nak=1nyk+nbk=1nxk+n1k=1nxkynk+αβ.

收敛数列必定有界,考虑 { x n } \{x_{n}\} {xn}(或者 { y n } \{y_{n}\} {yn}),一定存在 m , M ∈ R m,M\in \mathbb{R} m,MR,使得 m < x n < M m<x_{n}<M m<xn<M.

于是,

a n ⋅ ∑ k = 1 n y k + b n ⋅ ∑ k = 1 n x k + m n ∑ k = 1 n y k + α β < a 1 b n + a 2 b n − 1 + ⋯ + a n b 1 n < a n ⋅ ∑ k = 1 n y k + b n ⋅ ∑ k = 1 n x k + M n ∑ k = 1 n y k + α β . \frac{a}{n}\cdot \sum_{k=1}^{n}y_{k} + \frac{b}{n} \cdot \sum_{k=1}^{n}x_{k} + \frac{m}{n}\sum_{k=1}^{n}y_{k} + \alpha \beta < \frac{a_{1}b_{n}+a_{2}b_{n-1}+\cdots+a_{n}b_{1}}{n} < \frac{a}{n}\cdot \sum_{k=1}^{n}y_{k} + \frac{b}{n} \cdot \sum_{k=1}^{n}x_{k} + \frac{M}{n}\sum_{k=1}^{n}y_{k} + \alpha \beta. nak=1nyk+nbk=1nxk+nmk=1nyk+αβ<na1bn+a2bn1++anb1<nak=1nyk+nbk=1nxk+nMk=1nyk+αβ.

Cauchy 命题 以及数列极限的夹逼性,可得

lim ⁡ n → ∞ a 1 b n + a 2 b n − 1 + ⋯ + a n b 1 n = α β . \lim_{n \rightarrow \infty} \frac{a_{1}b_{n}+a_{2}b_{n-1}+\cdots+a_{n}b_{1}}{n} = \alpha\beta. nlimna1bn+a2bn1++anb1=αβ.

证毕

参考

[1] 谢惠民. 数学分析习题课讲义. 第1版. 上册. 北京:高等教育出版社.

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值