基于OpenCv的图像金字塔

⚠申明: 未经许可,禁止以任何形式转载,若要引用,请标注链接地址。 全文共计3077字,阅读大概需要3分钟
🌈更多学习内容, 欢迎👏关注👀【文末】我的个人微信公众号:不懂开发的程序猿
个人网站:https://jerry-jy.co/

❗❗❗知识付费,🈲止白嫖,有需要请后台私信或【文末】个人微信公众号联系我

基于OpenCv的图像金字塔

任务需求

一般情况下,我们要处理是一幅具有固定分辨率的图像。但是特别情况下我们需要对同一个图像的不同分辨率的子图像进行处理,所以我们需要创建一组图像,这些图像是具有不同分辨率的原始图像。我们把这组图像叫做图像金字塔。

在这里插入图片描述
图像金字塔主要解决图像分析尺度问题的,许多图像分析任务,包括超分辨、目标检测等等都是一种很重要的手段。例如在目标检测领域,图像中的物体通常很可能是远近不一,大小不一的,可以利用金字塔来检测不同尺度下的物体。

在这里插入图片描述

金字塔的另一种应用是图像融合。

在这里插入图片描述

任务目标

1、掌握图像高斯金字塔

2、掌握图像拉普拉斯金字塔

3、掌握图像使用拉普拉斯金字塔进行图像融合

任务环境

1、jupyter开发环境

2、OpenCv

3、python3.6

任务实施过程

一、高斯金字塔

图像金字塔中的向上和向下采样分别通过OpenCV函数 pyrUp 和 pyrDown 实现。

  • 对图像向上采样:cv2.pyrUp(img)
  • 对图像向下采样:pyrDown(img)
1.高斯金字塔:向下采样方法(缩小)
import cv2 # 导入opencv
import matplotlib.pyplot as plt # 导入绘图模块
import numpy as np # 导入numpy库
from utils import im_show # 导入显示图像函数
# 绘制图像直接展示,不用调用plt.show()
%matplotlib inline 
# 用来正常显示中文标签
plt.rc('font',family="SimHei")
# 读取图像,显示图像并查看原始图像尺寸
kenan = cv2.imread(r'./experiment/data/kenan.jpg')
print('原图像尺寸:',kenan.shape)
im_show('原图像',kenan)

在这里插入图片描述

# 高斯金字塔:向下采样
down=cv2.pyrDown(kenan)
print('图像向下采样后尺寸:',down.shape)
im_show('原图像向下采样',down)

在这里插入图片描述

2.高斯金字塔:向上采样方法(放大)
# 高斯金字塔:向上采样
up=cv2.pyrUp(kenan)
print('图像向上采样后尺寸:',up.shape)
im_show('原图像向上采样',up)

在这里插入图片描述

3.将图像下采样后上采样与原图对比
# 先将图像下采样两次
down1=cv2.pyrDown(kenan)
down2=cv2.pyrDown(down1)
# 再将得到的下采样图像上采样两次
up1=cv2.pyrUp(down2)
up2=cv2.pyrUp(up1)
plt.figure(figsize=(10,6)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不懂开发的程序猿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值